57 research outputs found
PeHVA22 gene family in passion fruit (Passiflora edulis): initial characterization and expression profiling diversity
Passion fruit, an economically valuable fruit crop, is highly vulnerable to adverse climate conditions. The HVA22 genes, recognized as abscisic acid (ABA) and stress-inducible, play vital roles in stress response and growth regulation in diverse eukaryotic organisms. Here, six HVA22 genes were firstly identified in passion fruit genome and all predicted to be localized within the endoplasmic reticulum. Phylogenetic analyses showed that all PeHVA22s were divided into four subgroups. The gene structural features of PeHVA22 genes clustered in the same subgroup were relatively conserved, while the gene structure characteristics of PeHVA22s from different subgroups varied significantly. PeHVA22A and PeHVA22C closely clustered with barley HVA22 in Group II, were also induced by ABA and drought stress treatment, suggesting conserved roles similar to barley HVA22. Meanwhile, most PeHVA22s exhibited induced expression post-drought treatment but were suppressed under salt, low and high-temperature conditions, indicating a unique role in drought response. Additionally, PeHVA22s displayed tissue-specific expression patterns across diverse tissues, except for PeHVA22B which maybe a pseudogene. Notably, PeHVA22C, PeHVA22E, and PeHVA22F predominantly expressed in fruit, indicating their involvement in fruit development. Almost all PeHVA22s showed variable expression at different developmental stages of stamens or ovules, implying their roles in passion fruit’s sexual reproduction. The intricate roles of PeHVA22s may result from diverse regulatory factors including transcription factors and CREs related to plant growth and development, hormone and stress responsiveness. These observations highlighted that PeHVA22s might play conserved roles in ABA response and drought stress tolerance, and also be participated in the regulation of passion fruit growth and floral development
Synthesis of a Dual Functional Anti-MDR Tumor Agent PH II-7 with Elucidations of Anti-Tumor Effects and Mechanisms
Multidrug resistance mediated by P-glycoprotein in cancer cells has been a major issue that cripples the efficacy of chemotherapy agents. Aimed for improved efficacy against resistant cancer cells, we designed and synthesized 25 oxindole derivatives based on indirubin by structure-activity relationship analysis. The most potent one was named PH II-7, which was effective against 18 cancer cell lines and 5 resistant cell lines in MTT assay. It also significantly inhibited the resistant xenograft tumor growth in mouse model. In cell cycle assay and apoptosis assay conducted with flow cytometry, PH II-7 induced S phase cell cycle arrest and apoptosis even in resistant cells. Consistently revealed by real-time PCR, it modulates the expression of genes related to the cell cycle and apoptosis in these cells, which may contributes to its efficacy against them. By side-chain modification and FITC-labeling of PH II-7, we were able to show with confocal microscopy that not only it was not pumped by P-glycoprotein, it also attenuated the efflux of Adriamycin by P-glycoprotein in MDR tumor cells. Real-time PCR and western blot analysis showed that PH II-7 down-regulated MDR1 gene via protein kinase C alpha (PKCA) pathway, with c-FOS and c-JUN as possible mediators. Taken together, PH II-7 is a dual-functional compound that features both the cytotoxicity against cancer cells and the inhibitory effect on P-gp mediated drug efflux
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Co-Regulations of Spartina alterniflora Invasion and Exogenous Nitrogen Loading on Soil N2O Efflux in Subtropical Mangrove Mesocosms
We thank Zhonglei Wang, Cunxin Ning, Hui Chen, Qian Huang, Fang Liu and Jian Zhou for their assistance with the greenhouse experiments and gas sampling. We are also grateful to Weimin Song, Rashid Rafique, Junyi Liang, Zheng Shi and Jianyang Xia for editing the manuscript.Both plant invasion and nitrogen (N) enrichment should have significant impact on mangrove ecosystems in coastal regions around the world. However, how N2O efflux in mangrove wetlands responds to these environmental changes has not been well studied. Here, we conducted a mesocosm experiment with native mangrove species Kandelia obovata, invasive salt marsh species Spartina alterniflora, and their mixture in a simulated tide rotation system with or without nitrogen addition. In the treatments without N addition, the N2O effluxes were relatively low and there were no significant variations among the three vegetation types. A pulse loading of exogenous ammonium nitrogen increased N2O effluxes from soils but the stimulatory effect gradually diminished over time, suggesting that frequent measurements are necessary to accurately understand the behavior of N-induced response of N2O emissions. With the N addition, the N2O effluxes from the invasive S. alterniflora were lower than that from native K. obovata mesocosms. This result may be attributed to higher growth of S. alterniflora consuming most of the available nitrogen in soils, and thus inhibiting N2O production. We concluded that N loading significantly increased N2O effluxes, while the invasion of S. alterniflora reduced N2O effluxes response to N loading in this simulated mangrove ecosystem. Thus, both plant invasion and excessive N loading can co-regulate soil N2O emissions from mangrove wetlands, which should be considered when projecting future N2O effluxes from this type of coastal wetland.Yeshttp://www.plosone.org/static/editorial#pee
A constrained proof of the strong version of the Eshelby conjecture for the three-dimensional isotropic medium
Eshelby's seminal work on the ellipsoidal inclusion problem leads to the
conjecture that the ellipsoid is the only inclusion possessing the uniformity
property that a uniform eigenstrain is transformed into a uniform elastic
strain. For the three-dimensional isotropic medium, the weak version of the
Eshelby conjecture has been substantiated. The previous work of Ammari et al.
substantiates the strong version of the Eshelby conjecture for the cases when
the three eigenvalues of the eigenstress are distinct or all the same, whereas
the case where two of the eigenvalues of the eigenstress are identical and the
other one is distinct remains a difficult problem. In this work, we study the
latter case. To this end, firstly, we present and prove a necessary condition
for a convex inclusion being capable of transforming a single uniform
eigenstress into a uniform elastic stress field. Since the necessary condition
is not enough to determine the shape of the inclusion, secondly, we introduce a
constraint that is concerned with the material parameters, and prove that there
exist combinations of the elastic tensors and uniform eigenstresses such that
only an ellipsoid can have the Eshelby uniformity property for these
combinations simultaneously. Finally, we provide a more specifically
constrained proof of the conjecture by proving that for the uniform strain
fields constrained to that induced by an ellipsoid from a set of specified
uniform eigenstresses, the strong version of the Eshelby conjecture is true for
a set of isotropic elastic tensors which are associated with the specified
uniform eigenstresses. This work makes some progress towards the complete
solution of the intriguing and longstanding Eshelby conjecture for
three-dimensional isotropic media
Direct 4D printing of ceramics driven by hydrogel dehydration
The dataset contains the mechanical properties of ceramic elastomer and acrylic acid- poly(ethylene glycol) diacrylate (AP) hydrogel, Young's modulus and volumetric shrinkage of AP hydrogel during dehydration, peeling test of ceramic elastomer-hydrogel laminate, bending curvature of ceramic elastomer-hydrogel laminate with different parameters, shape retention ratio of ceramic after sintering, and calculation results
- …