18 research outputs found

    Synthesis of ultra-narrow PbTe nanorods with extremely strong quantum confinement

    Get PDF
    Monodisperse, high-quality, ultra-narrow PbTe nanorods were synthesized for the first time in a one-pot, hot-injection reaction using trans-2-decenoic acid as the agents for lead precursors and tris(diethylamino)phosphine telluride together with free tris(diethylamino)phosphine as the telluride precursors. High monomer reactivity, rapid nucleation and fast growth rate derived from the new precursors led to the anisotropic growth of PbTe nanocrystals at low reaction temperatures

    Machine learning for predicting the treatment effect of orthokeratology in children

    Get PDF
    PurposeMyopia treatment using orthokeratology (ortho-k) slows myopia progression. However, it is not equally effective in all patients. We aimed to predict the treatment effect of ortho-k using a machine-learning-assisted (ML) prediction model.MethodsOf the 119 patients who started ortho-k treatment between January 1, 2019, and January 1, 2022, 91 met the inclusion criteria and were included in the model. Ocular parameters and clinical characteristics were collected. A logistic regression model with least absolute shrinkage and selection operator regression was used to select factors associated with the treatment effect.ResultsAge, baseline axial length, pupil diameter, lens wearing time, time spent outdoors, time spent on near work, white-to-white distance, anterior corneal flat keratometry, and posterior corneal astigmatism were selected in the model (aera under curve: 0.949). The decision curve analysis showed beneficial effects. The C-statistic of the predictive model was 0.821 (95% CI: 0.815, 0.827).ConclusionOcular parameters and clinical characteristics were used to predict the treatment effect of ortho-k. This ML-assisted model may assist ophthalmologists in making clinical decisions for patients, improving myopia control, and predicting the clinical effect of ortho-k treatment via a retrospective non-intervention trial

    Case report: Clinical, imaging, and genetic characteristics of type B niemann pick disease combined with segawa syndrome diagnosed via dual gene sequencing

    Get PDF
    Niemann Pick disease B (NPB) often presents with hepatosplenomegaly and lung pathological changes, but it usually does not present with central nervous system symptoms. This report presents the unique case of a 21-year-old woman with a 10-year history of hard skin and hepatosplenomegaly. Genetic sequencing revealed NPB and also suggested Segawa syndrome. Although symptomatic supportive treatments were administered in an attempt to improve muscle tone and treat the skin sclerosis, their efficacy was not satisfactory, and the patient refused further treatment. This case provides several noteworthy findings. First, although NPB and Segawa syndrome are rare, both are autosomal recessive inherited diseases that share common clinical symptoms and imaging manifestations. Second, when NPB and Segawa syndrome are highly suspected, screening for tyrosine hydroxylase (TH) and sphingomyelin phosphodiesterase-1 (SMPD1) gene mutations is critical to determine an accurate diagnosis. Finally, early diagnosis and comprehensive therapies are crucial for improving the prognosis of patients with NPB and Segawa syndrome

    Genome-Wide Identification and Expression Analysis of WRKY Gene Family in <i>Neolamarckia cadamba</i>

    No full text
    The WRKY transcription factor family plays important regulatory roles in multiple biological processes in higher plants. They have been identified and functionally characterized in a number of plant species, but very little is known in Neolamarckia cadamba, a ‘miracle tree’ for its fast growth and potential medicinal resource in Southeast Asia. In this study, a total of 85 WRKY genes were identified in the genome of N. cadamba. They were divided into three groups according to their phylogenetic features, with the support of the characteristics of gene structures and conserved motifs of protein. The NcWRKY genes were unevenly distributed on 22 chromosomes, and there were two pairs of segmentally duplicated events. In addition, a number of putative cis-elements were identified in the promoter regions, of which hormone- and stress-related elements were shared in many NcWRKYs. The transcript levels of NcWRKY were analyzed using the RNA-seq data, revealing distinct expression patterns in various tissues and at different stages of vascular development. Furthermore, 16 and 12 NcWRKY genes were confirmed to respond to various hormone treatments and two different abiotic stress treatments, respectively. Moreover, the content of cadambine, the active metabolite used for the various pharmacological activities found in N. cadamba, significantly increased after Methyl jasmonate treatment. In addition, expression of NcWRKY64/74 was obviously upregulated, suggesting that they may have a potential function of regulating the biosynthesis of cadambine in response to MeJA. Taken together, this study provides clues into the regulatory roles of the WRKY gene family in N. cadamba

    Molecular Cloning and Functional Analysis of Three FLOWERING LOCUS T (FT) Homologous Genes from Chinese Cymbidium

    Get PDF
    Abstract: The FLOWERING LOCUS T (FT) gene plays crucial roles in regulating the transition from the vegetative to reproductive phase. To understand the molecular mechanism of reproduction, three homologous FT genes were isolated and characterized from Cymbidium sinense “Qi Jian Bai Mo”, Cymbidium goeringii and Cymbidium ensifolium “Jin Si Ma Wei”. The three genes contained 618-bp nucleotides with a 531-bp open reading frame (ORF) of encoding 176 amino acids (AAs). Alignment of the AA sequences revealed that CsFT, CgFT and CeFT contain a conserved domain, which is characteristic of the PEBP-RKIP superfamily, and which share high identity with FT of other plants in GenBank: 94 % with OnFT from Oncidium Gower Ramsey, 79 % with Hd3a from Oryza sativa, and 74 % with FT from Arabidopsis thaliana. qRT-PCR analysis showed a diurnal expression pattern of CsFT, CgFT and CeFT following both long day (LD, 16-h light/8-h dark) and short day (SD, 8-h light/16-h dark) treatment. While the transcripts ofInt. J. Mol. Sci. 2012, 13 11386 both CsFT and CeFT under LD were significantly higher than under SD, those of CgFT wer

    Filamentous‐Actin‐Mimicking Nanoplatform for Enhanced Cytosolic Protein Delivery

    No full text
    Abstract Despite the potential of protein therapeutics, the cytosolic delivery of proteins with high efficiency and bioactivity remains a significant challenge owing to exocytosis and lysosomal degradation after endocytosis. Therefore, it is important to develop a safe and efficient strategy to bypass endocytosis. Inspired by the extraordinary capability of filamentous‐actin (F‐actin) to promote cell membrane fusion, a cyanine dye assembly‐containing nanoplatform mimicking the structure of natural F‐actin is developed. The nanoplatform exhibits fast membrane fusion to cell membrane mimics and thus enters live cells through membrane fusion and bypasses endocytosis. Moreover, it is found to efficiently deliver protein cargos into live cells and quickly release them into the cytosol, leading to high protein cargo transfection efficiency and bioactivity. The nanoplatform also results in the superior inhibition of tumor cells when loaded with anti‐tumor proteins. These results demonstrate that this fusogenic nanoplatform can be valuable for cytosolic protein delivery and tumor treatment

    Pharmacological boosting of cGAS activation sensitizes chemotherapy by enhancing antitumor immunity

    No full text
    Summary: Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment
    corecore