14 research outputs found

    Recent Insight in Transition Metal Anchored on Nitrogen-Doped Carbon Catalysts: Preparation and Catalysis Application

    No full text
    The design and preparation of novel, high-efficiency, and low-cost heterogeneous catalysts are important topics in academic and industry research. In the past, inorganic materials, metal oxide, and carbon materials were used as supports for the development of heterogeneous catalysts due to their excellent properties, such as high specific surface areas and tunable porous structures. However, the properties of traditional pristine carbon materials cannot keep up with the sustained growth and requirements of industry and scientific research, since the introduction of nitrogen atoms into carbon materials may significantly enhance a variety of their physicochemical characteristics, which gradually become appropriate support for synthesizing supported transition metal catalysts. In the past several decades, the transition metal anchored on nitrogen-doped carbon catalysts has attracted a tremendous amount of interest as potentially useful catalysts for diverse chemical reactions. Compared with original carbon support, the doping of nitrogen atoms can significantly regulate the physicochemical properties of carbon materials and allow active metal species uniformly dispersed on the support. The various N species in support also play a critical role in accelerating the catalytic performance in some reactions. Besides, the interaction between support and transition metal active sites can offer an anchor site to stabilize metal species during the preparation process and then improve reaction performance, atomic utilization, and stability. In this review, we highlight the recent advances and the remaining challenges in the preparation and application of transition metal anchored on nitrogen-doped carbon catalysts

    Recent Insight in Transition Metal Anchored on Nitrogen-Doped Carbon Catalysts: Preparation and Catalysis Application

    No full text
    The design and preparation of novel, high-efficiency, and low-cost heterogeneous catalysts are important topics in academic and industry research. In the past, inorganic materials, metal oxide, and carbon materials were used as supports for the development of heterogeneous catalysts due to their excellent properties, such as high specific surface areas and tunable porous structures. However, the properties of traditional pristine carbon materials cannot keep up with the sustained growth and requirements of industry and scientific research, since the introduction of nitrogen atoms into carbon materials may significantly enhance a variety of their physicochemical characteristics, which gradually become appropriate support for synthesizing supported transition metal catalysts. In the past several decades, the transition metal anchored on nitrogen-doped carbon catalysts has attracted a tremendous amount of interest as potentially useful catalysts for diverse chemical reactions. Compared with original carbon support, the doping of nitrogen atoms can significantly regulate the physicochemical properties of carbon materials and allow active metal species uniformly dispersed on the support. The various N species in support also play a critical role in accelerating the catalytic performance in some reactions. Besides, the interaction between support and transition metal active sites can offer an anchor site to stabilize metal species during the preparation process and then improve reaction performance, atomic utilization, and stability. In this review, we highlight the recent advances and the remaining challenges in the preparation and application of transition metal anchored on nitrogen-doped carbon catalysts

    Non-Stacked γ-Fe2O3/C@TiO2 Double-Layer Hollow Nanoparticles for Enhanced Photocatalytic Applications under Visible Light

    No full text
    Herein, a non-stacked γ-Fe2O3/C@TiO2 double-layer hollow nano photocatalyst has been developed with ultrathin nanosheets-assembled double shells for photodegradation phenol. High catalytic performance was found that the phenol could be completely degraded in 135 min under visible light, due to the moderate band edge position (VB at 0.59 eV and CB at −0.66 eV) of the non-stacked γ-Fe2O3/C@TiO2, which can expand the excitation wavelength range into the visible light region and produce a high concentration of free radicals (such as ·OH, ·O2−, holes). Furthermore, the interior of the hollow composite γ-Fe2O3 is responsible for charge generation, and the carbon matrix facilitates charge transfer to the external TiO2 shell. This overlap improved the selection/utilization efficiency, while the unique non-stacked double-layered structure inhibited initial charge recombination over the photocatalysts. This work provides new approaches for photocatalytic applications with γ-Fe2O3/C-based materials
    corecore