110 research outputs found

    Prospective Analysis of Aluminum Metal for Energy Applications

    Get PDF
    With the increasing global demand for sustainable energy, metal aluminum has shown tremendous potential and advantages as an important energy material. This article focuses on exploring the application prospects of metal aluminum in renewable energy, energy storage, and energy efficiency. In the field of renewable energy, metal aluminum can be used in the manufacturing of solar cell components and auxiliary equipment. Its properties make it a suitable material for these applications. In terms of energy storage, metal aluminum exhibits high performance and a long lifespan in hydrogen storage and energy storage devices. It shows promise as an efficient and durable choice for these applications. In the field of energy efficiency, metal aluminum plays a significant role as a lightweight material in the automotive industry and in thermal management technologies. It can contribute to improving energy utilization efficiency and reducing energy consumption in various applications. However, the application of metal aluminum still faces some challenges, including cost and sustainability issues. Therefore, further research, development, and collaboration are needed to promote the application and development of metal aluminum in the energy sector, contributing to the achievement of sustainable energy goals

    Sparse Semantic Map-Based Monocular Localization in Traffic Scenes Using Learned 2D-3D Point-Line Correspondences

    Full text link
    Vision-based localization in a prior map is of crucial importance for autonomous vehicles. Given a query image, the goal is to estimate the camera pose corresponding to the prior map, and the key is the registration problem of camera images within the map. While autonomous vehicles drive on the road under occlusion (e.g., car, bus, truck) and changing environment appearance (e.g., illumination changes, seasonal variation), existing approaches rely heavily on dense point descriptors at the feature level to solve the registration problem, entangling features with appearance and occlusion. As a result, they often fail to estimate the correct poses. To address these issues, we propose a sparse semantic map-based monocular localization method, which solves 2D-3D registration via a well-designed deep neural network. Given a sparse semantic map that consists of simplified elements (e.g., pole lines, traffic sign midpoints) with multiple semantic labels, the camera pose is then estimated by learning the corresponding features between the 2D semantic elements from the image and the 3D elements from the sparse semantic map. The proposed sparse semantic map-based localization approach is robust against occlusion and long-term appearance changes in the environments. Extensive experimental results show that the proposed method outperforms the state-of-the-art approaches

    Heterogeneous Trajectory Forecasting via Risk and Scene Graph Learning

    Full text link
    Heterogeneous trajectory forecasting is critical for intelligent transportation systems, while it is challenging because of the difficulty for modeling the complex interaction relations among the heterogeneous road agents as well as their agent-environment constraint. In this work, we propose a risk and scene graph learning method for trajectory forecasting of heterogeneous road agents, which consists of a Heterogeneous Risk Graph (HRG) and a Hierarchical Scene Graph (HSG) from the aspects of agent category and their movable semantic regions. HRG groups each kind of road agents and calculates their interaction adjacency matrix based on an effective collision risk metric. HSG of driving scene is modeled by inferring the relationship between road agents and road semantic layout aligned by the road scene grammar. Based on this formulation, we can obtain an effective trajectory forecasting in driving situations, and superior performance to other state-of-the-art approaches is demonstrated by exhaustive experiments on the nuScenes, ApolloScape, and Argoverse datasets.Comment: Submitted to IEEE Transactions on Intelligent Transportation Systems, 202

    BlockEmulator: An Emulator Enabling to Test Blockchain Sharding Protocols

    Full text link
    Numerous blockchain simulators have been proposed to allow researchers to simulate mainstream blockchains. However, we have not yet found a testbed that enables researchers to develop and evaluate their new consensus algorithms or new protocols for blockchain sharding systems. To fill this gap, we develop BlockEmulator, which is designed as an experimental platform, particularly for emulating blockchain sharding mechanisms. BlockEmulator adopts a lightweight blockchain architecture such that developers can only focus on implementing their new protocols or mechanisms. Using layered modules and useful programming interfaces offered by BlockEmulator, researchers can implement a new protocol with minimum effort. Through experiments, we test various functionalities of BlockEmulator in two steps. Firstly, we prove the correctness of the emulation results yielded by BlockEmulator by comparing the theoretical analysis with the observed experiment results. Secondly, other experimental results demonstrate that BlockEmulator can facilitate the measurement of a series of metrics, including throughput, transaction confirmation latency, cross-shard transaction ratio, the queuing size of transaction pools, workload distribution across blockchain shards, etc. We have made BlockEmulator open-source in Github

    Management of the refractory vitiligo patient: current therapeutic strategies and future options

    Get PDF
    Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research

    Advanced Glycation End Products-Induced Activation of Keratinocytes: A Mechanism Underlying Cutaneous Immune Response in Psoriasis

    Get PDF
    Psoriasis is a common inflammatory skin disease, in which epidermal keratinocytes play a vital role in its pathogenesis by acting both as the responder and as the accelerator to the cutaneous psoriatic immune response. Advanced glycation end products (AGEs) are a class of proinflammatory metabolites that are commonly accumulating in cardiometabolic disorders. Recent studies have also observed the increased level of AGEs in the serum and skin of psoriasis patients, but the role of AGEs in psoriatic inflammation has not been well investigated. In the present study, we initially detected abnormal accumulation of AGEs in epidermal keratinocytes of psoriatic lesions collected from psoriasis patients. Furthermore, AGEs promoted the proliferation of keratinocytes via upregulated Keratin 17 (K17)-mediated p27KIP1 inhibition followed by accelerated cell cycle progression. More importantly, AGEs facilitated the production of interleukin-36 alpha (IL-36α) in keratinocytes, which could enhance T helper 17 (Th17) immune response. In addition, the induction of both K17 and IL-36α by AGEs in keratinocytes was dependent on the activation of signal transducer and activator of transcription 1/3 (STAT1/3) signaling pathways. At last, the effects of AGEs on keratinocytes were mediated by the receptor for AGEs (RAGE). Taken together, these findings support that AGEs potentiate the innate immune function of keratinocytes, which contributes to the formation of psoriatic inflammation. Our study implicates AGEs as a potential pathogenic link between psoriasis and cardiometabolic comorbidities

    Natrium Benzoate Alleviates Neuronal Apoptosis via the DJ-1-Related Anti-oxidative Stress Pathway Involving Akt Phosphorylation in a Rat Model of Traumatic Spinal Cord Injury

    Get PDF
    This study aimed to explore the neuroprotective effects and mechanisms of natrium benzoate (NaB) and DJ-1 in attenuating reactive oxygen species (ROS)-induced neuronal apoptosis in traumatic spinal cord injury (t-SCI) in rats. T-SCI was induced by clip compression. The protein expression and neuronal apoptosis was evaluated by Western blotting, double immunofluorescence staining and transmission electron microscope (TEM). ROS level, spinal cord water content (SCWC) and Evans blue (EB) extravasation was also examined. Locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) and inclined plane test (IPT) scores. We found that DJ-1 is expressed in spinal cord neurons and increased after t-SCI. At 24 h post-injury, the levels of DJ-1, p-Akt, SOD2, ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3 increased, while the Bcl-2/Bax ratio decreased. NaB upregulated DJ-1, p-Akt, and SOD2, decreased ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3, and increased the Bcl-2/Bax ratio, which were reversed by DJ-1 siRNA. The proportion of CC-3- and TUNEL-positive neurons also increased after t-SCI and was reduced by NaB. These effects were reversed by MK2206. Moreover, the level of oxDJ-1 increased after t-SCI, which was decreased by DJ-1 siRNA, NaB or the combination of them. NaB also reduced mitochondrial vacuolization, SCWC and EB extravasation, and improved locomotor function assessed by the BBB and IPT scores. In conclusion, NaB increased DJ-1, and thus reduced ROS and ROS-induced neuronal apoptosis by promoting Akt phosphorylation in t-SCI rats. NaB shows potential as a therapeutic agent for t-SCI, with DJ-1 as its main target

    White Matter Injury After Intracerebral Hemorrhage

    Get PDF
    Spontaneous intracerebral hemorrhage (ICH) accounts for 15% of all stroke cases. ICH is a devastating form of stroke associated with high morbidity, mortality, and disability. Preclinical studies have explored the mechanisms of neuronal death and gray matter damage after ICH. However, few studies have examined the development of white matter injury (WMI) following ICH. Research on WMI indicates that its pathophysiological presentation involves axonal damage, demyelination, and mature oligodendrocyte loss. However, the detailed relationship and mechanism between WMI and ICH remain unclear. Studies of other acute brain insults have indicated that WMI is strongly correlated with cognitive deficits, neurological deficits, and depression. The degree of WMI determines the short- and long-term prognosis of patients with ICH. This review demonstrates the structure and functions of the white matter in the healthy brain and discusses the pathophysiological mechanism of WMI following ICH. Our review reveals that the development of WMI after ICH is complex; therefore, comprehensive treatment is essential. Understanding the relationship between WMI and other brain cells may reveal therapeutic targets for the treatment of ICH
    • …
    corecore