117 research outputs found

    Temporal and Spatial Evolution of Agricultural Carbon Emissions and Their Impact on Functional Zoning: Evidence from Hubei Province

    Get PDF
    Introduction: To investigate the spatiotemporal evolution of agricultural carbon emissions and carbon absorption, analyse the spatiotemporal variations in the carbon balance, delineate carbon-offsetting regions, and formulate low-carbon development strategies tailored to various major functional zones, this study aims to promote coordinated regional ecological and environmental governance. Methods: This study takes a perspective based on major functional zones, focuses on 17 cities in Hubei Province, studies the spatiotemporal variations in agricultural carbon budgets and carbon offsets in each city from the perspective of functional zoning and proposes a spatial optimization scheme for reducing carbon emissions. Results and discussion: The results show that both agricultural carbon emissions and carbon absorption in Hubei Province gradually increased, although the agricultural carbon budgets varied significantly among cities. Arable lands were the main agricultural carbon sinks in Hubei Province. Overall, carbon emissions exhibited declining core–periphery zonation, with Xiangyang, Jingzhou, and Huanggang serving as the centre (high emissions) and the cities of Shennongjia, Enshi, and Yichang serving as the periphery (low emissions). Carbon absorption displayed a U-shaped distribution, with high values in the east, south, and west and low values in the centre and north. The cities of Yichang, Jingmen, and Huanggang were the peak carbon sink areas. In recent years, the coordination between the agricultural carbon emissions and carbon budgets in Hubei Province has gradually improved, and agricultural carbon absorption and emissions have become increasingly balanced. Seven carbon-positive, five carbon-neutral, and five carbon-negative areas were identified in the province. Based on these findings, differentiated carbon emission reduction strategies were proposed to promote coordinated and low-carbon agriculture

    Advances in Concepts, Ideas, and Methods Relevant to Fine Needle Aspiration Biopsy of Thyroid and Cervical Lymph Node

    Get PDF
    With the increasingly used semi-thyroidectomy and rapid progress in ultrasound-guided thermal ablation therapy for treatment of papillary thyroid carcinoma (PTC) and cervical lymph node metastasis from PTC, ultrasound-guided fine needle aspiration biopsy (FNAB) has got the mainstream position in pre-treatment cytopathologic diagnosis of PTC. How to acquire adequate and qualified cellular specimen for cytological examination has been described in several published expert consensus and practice guidelines. However, new issues continue to emerge in the real world of thyroid FNAB practice, and most of them are rooted in the perception and skills of the physician or technician who conduct FNAB. In this chapter, a series of new concept, idea, and technical methods are to be introduced and discussed. We believe that properly addressing these issues will facilitate the better implementation of FNAB and promote the new therapeutic modalities such as the thermal ablation to better progress

    Evolutionary origin of genomic structural variations in domestic yaks

    Get PDF
    Yak has been subject to natural selection, human domestication and interspecific introgression during its evolution. However, genetic variants favored by each of these processes have not been distinguished previously. We constructed a graph-genome for 47 genomes of 7 cross-fertile bovine species. This allowed detection of 57,432 high-resolution structural variants (SVs) within and across the species, which were genotyped in 386 individuals. We distinguished the evolutionary origins of diverse SVs in domestic yaks by phylogenetic analyses. We further identified 334 genes overlapping with SVs in domestic yaks that bore potential signals of selection from wild yaks, plus an additional 686 genes introgressed from cattle. Nearly 90% of the domestic yaks were introgressed by cattle. Introgression of an SV spanning the KIT gene triggered the breeding of white domestic yaks. We validated a significant association of the selected stratified SVs with gene expression, which contributes to phenotypic variations. Our results highlight that SVs of different origins contribute to the phenotypic diversity of domestic yaks

    Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana

    Get PDF
    Populations of widespread species are usually geographically distributed through contrasting stresses, but underlying genetic mechanisms controlling this adaptation remain largely unknown. Here, we show that in Arabidopsis thaliana, allelic changes in the cis-regulatory elements, WT box and W box, in the promoter of a key transcription factor associated with oxygen sensing, RELATED TO AP 2.12 (RAP2.12), are responsible for differentially regulating tolerance to drought and flooding. These two cis-elements are regulated by different transcription factors that downstream of RAP2.12 results in differential accumulation of hypoxia-responsive transcripts. The evolution from one cis-element haplotype to the other is associated with the colonization of humid environments from arid habitats. This gene thus promotes both drought and flooding adaptation via an adaptive mechanism that diversifies its regulation through noncoding alleles

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Preparation of Hypophosphorous Acid by Bipolar Membrane Electrodialysis: Process Optimization and Phosphorous Acid Minimization

    Full text link
    Hypophosphorous acid (H3PO2) is an important chemical product with wide applications in pharmaceuticals and electroless plating. In this study, bipolar membrane electrodialysis (BMED) was used to produce H3PO2 from sodium hypophosphite salt (NaH2PO2) to replace the traditional preparation methods. The BMED process was optimized in terms of current density, NaH2PO2 salt concentration, and initial NaOH concentration of the base solution. The results indicated that low Na+ leakage occurred at lower salt concentrations. Under the optimum conditions, such a BMED system obtained a high concentration of H3PO2, a low Na+ content, and a low energy consumption, equaling to 1.03 mol/L, 670 ppm, and 1.18 kW h/kg, respectively. To minimize the amount of phosphorous acid (H3PO3) generated from H3PO2 oxidation during the BMED process, a nitrogen aeration operation was applied in both the acid and salt chambers, decreasing the HPO32- content to 251 ppm, which was 44.1% lower than that without a dissolved oxygen content control strategy. The newly produced H3PO3 during the BMED process was reduced by 96.5%. The obtained results indicated that the BMED process has great potential for application in the production of high-quality H3PO2 from NaH2PO2 in industry
    • …
    corecore