29 research outputs found

    Habitable Zones and UV Habitable Zones around Host Stars

    Full text link
    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds can not go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 \mo. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for life existence.Comment: 5 pages, 3 figure

    Habitable Zones of Host Stars During the Post-MS Phase

    Full text link
    A star will become brighter and brighter with stellar evolution, and the distance of its habitable zone will become farther and farther. Some planets outside the habitable zone of a host star during the main sequence phase may enter the habitable zone of the host star during other evolutionary phases. A terrestrial planet within the habitable zone of its host star is generally thought to be suited to life existence. Furthermore, a rocky moon around a giant planet may be also suited to life survive, provided that the planet-moon system is within the habitable zone of its host star. Using Eggleton's code and the boundary flux of habitable zone, we calculate the habitable zone of our Solar after the main sequence phase. It is found that Mars' orbit and Jupiter's orbit will enter the habitable zone of Solar during the subgiant branch phase and the red giant branch phase, respectively. And the orbit of Saturn will enter the habitable zone of Solar during the He-burning phase for about 137 million years. Life is unlikely at any time on Saturn, as it is a giant gaseous planet. However, Titan, the rocky moon of Saturn, may be suitable for biological evolution and become another Earth during that time. For low-mass stars, there are similar habitable zones during the He-burning phase as our Solar, because there are similar core masses and luminosities for these stars during that phase.Comment: 6 pages, 7 figures. Accepted by Ap & S

    Research of control strategies of MMC based on full bridge sub-modules

    No full text
    Although full bridge sub-module topologies require more power devices than half bridge topology, it can offer flexible control of positive, negative, and zero voltage output characteristics. Here, full-bridge MMC with three kinds of operating modes as positive, negative voltage output with low voltage operation, and DC-link fault current suppression with zero voltage output are studied. To deal with the problem of insulation reduction when long-distance overhead line is applied and reduced DC voltage operation is required when LCC is connected with MMC, the effect of constant power and reduced power transmission on the storage capacitor voltage balance are studied. What is more, the zero voltage output characteristic is also studied not only to avoid the problem that the sub-module capacitor voltage may diverge due to long time blocking converter during DC line fault but also to supply reactive power for AC grid. Control strategies are designed under different operating modes to achieve full bridge MMC flexible operation. Finally, a simulation model is built in PSCAD/EMTDC to simulate the output characteristics of full-bridge MMC in different operation modes

    Modular multilevel converter composite submodule topology and control

    No full text
    The DC-side short-circuit fault suppression of modular multilevel converter (MMC) applied to DC transmission has been a technical problem. According to the different location of cutting off fault current, this study first analyses three possible suppression schemes: AC/DC circuit breaker, bridge arm damper, and MMC submodule (SM) topologies and their respective features. Then, characteristics of SM topologies with DC fault current self-blocking capability are summarised, and an improved composite SM topology is designed based on the full-bridge SM and multilevel capacitor storage structures. The suppression characteristics of the proposed topology under different operation modes, capacitor voltage balancing control during blocking, and self-starting process are also studied. Finally, a simulation model is built in the PSCAD/EMTDC to verify the DC-side short-circuit fault suppression characteristics and control strategies

    The Synthesis and Application of Nitrogen-Doped Graphene Quantum Dots on Brilliant Blue Detection

    No full text
    Nitrogen-doped graphene quantum dots had been successfully synthesized and characterized by using transmission electron microscope, X-ray photoelectron spectroscopy, absorbance spectrum, fluorescence emission spectrum, and fluorescence decay curve. TEM results indicated that the diameters of the as-prepared nitrogen-doped graphene quantum dots were in the range of 2 - 5 nm and the lattice space is about 0.276 nm; Raman spectrum result indicated that there were two characteristic peaks, generally named D (~1408 cm−1) and G (~1640 cm−1) bands; both TEM and Raman spectrum results indicated that the as-synthesized product was graphene quantum dots. Deconvoluted high resolution XPS spectra for C1s, O1s, and N1s results indicated that there are -NH-, -COOH, and -OH groups on the surface of nitrogen-doped graphene quantum dot. Fluorescence emission spectrum indicated that the maximum fluorescence emission spectrum of nitrogen-doped graphene quantum dots was blue shift about 30.1 nm and the average fluorescence decay time of nitrogen-doped graphene quantum dots increased about 2 ns, compared with graphene quantum dots without doping of nitrogen. Then, the as-prepared nitrogen-doped graphene quantum dots were used to quantitatively analyze brilliant blue based on the fluorescent quenching of graphene quantum dots, and the effect of pH and reaction time on this fluorescent quenching system was also obtained. Under selected condition, the linear regression equations were F0/F=0.0087 (brilliant blue) + 0.9553 and F0/F=0.01205 (brilliant blue) + 0.6695, and low detection limit was 3.776 μmol/L (3.776 nmol/mL). Once more diluted N-GQDs (0.05 mg/mL) were used, the low detection limit could reach 94.87 nmol/L. Then, temperature-dependent experiment, absorbance spectra, and dynamic fluorescence quenching rate constant were used to study the quenching mechanism; all results indicated that this quenching process was a static quenching process based on the formation of complex between nitrogen-doped graphene quantum dots and brilliant blue through hydrogen bond. Particularly, this method was used to quantitatively analyze the wine sample, of which results have a high consistence with the results of the spectrophotometric method; demonstrating this fluorescence quenching method could be used in practical sample application

    Low-Carbon Impact of Urban Rail Transit Based on Passenger Demand Forecast in Baoji

    No full text
    There are increasing traffic pollution issues in the process of urbanization in many countries; urban rail transit is low-carbon and widely regarded as an effective way to solve such problems. The passenger flow proportion of different transportation types is changing along with the adjustment of the urban traffic structure and a growing demand from passengers. The reduction of carbon emissions brought about by rail transit lacks specific quantitative research. Based on a travel survey of urban residents, this paper constructed a method of estimating carbon emissions from two different scenarios where rail transit is and is not available. This study uses the traditional four-stage model to forecast passenger volume demand at the city level and then obtains the basic target parameters for constructing the carbon emission reduction model, including the trip origin-destination (OD), mode, and corresponding distance range of different modes on the urban road network. This model was applied to Baoji, China, where urban rail transit will be available from 2023. It calculates the changes in carbon emission that rail transit can bring about and its impact on carbon emission reductions in Baoji in 2023

    A Study on the Calculation of Platform Sizes of Urban Rail Hub Stations Based on Passenger Behavior Characteristics

    No full text
    The Chinese national rail transit design specification decides the size of urban rail transit platforms in China. This suggested method treats passengers as homogeneous individuals when calculating the walking area within a platform. However, the heterogeneity of passenger behavior in a rail hub station has not been considered. It is not reasonable to see passengers as homogeneous individuals. In this study, by observing passenger behavior characteristics at rail hub platforms, two parameters were obtained, walking speed and luggage size. Passengers were then accordingly put into different groups, and dynamic spatial demands for each passenger group were calculated by parameter fitting functions. Based on the theory of spatiotemporal consumption, the nonlinear constraint model was constructed to determine the space-time consumption of each passenger group, and finally the area demands of different types of passengers were obtained for different time and passenger flows. An application was made to Beikezhan Station on Xi’an Metro line 2. The calculation results show the area demands ranges of four passenger groups with distinct characteristics, and their space-time consumption varied. The study can calculate the space demands for all passenger varieties within a rail hub transit platform and provide suggestions for the determination of the ideal walking area size of rail transit platforms
    corecore