977 research outputs found
Understanding and Diagnosing Visual Tracking Systems
Several benchmark datasets for visual tracking research have been proposed in
recent years. Despite their usefulness, whether they are sufficient for
understanding and diagnosing the strengths and weaknesses of different trackers
remains questionable. To address this issue, we propose a framework by breaking
a tracker down into five constituent parts, namely, motion model, feature
extractor, observation model, model updater, and ensemble post-processor. We
then conduct ablative experiments on each component to study how it affects the
overall result. Surprisingly, our findings are discrepant with some common
beliefs in the visual tracking research community. We find that the feature
extractor plays the most important role in a tracker. On the other hand,
although the observation model is the focus of many studies, we find that it
often brings no significant improvement. Moreover, the motion model and model
updater contain many details that could affect the result. Also, the ensemble
post-processor can improve the result substantially when the constituent
trackers have high diversity. Based on our findings, we put together some very
elementary building blocks to give a basic tracker which is competitive in
performance to the state-of-the-art trackers. We believe our framework can
provide a solid baseline when conducting controlled experiments for visual
tracking research
Bounded-Distortion Metric Learning
Metric learning aims to embed one metric space into another to benefit tasks
like classification and clustering. Although a greatly distorted metric space
has a high degree of freedom to fit training data, it is prone to overfitting
and numerical inaccuracy. This paper presents {\it bounded-distortion metric
learning} (BDML), a new metric learning framework which amounts to finding an
optimal Mahalanobis metric space with a bounded-distortion constraint. An
efficient solver based on the multiplicative weights update method is proposed.
Moreover, we generalize BDML to pseudo-metric learning and devise the
semidefinite relaxation and a randomized algorithm to approximately solve it.
We further provide theoretical analysis to show that distortion is a key
ingredient for stability and generalization ability of our BDML algorithm.
Extensive experiments on several benchmark datasets yield promising results
- …