67 research outputs found

    RGB: a scalable and reliable group membership protocol in mobile Internet

    Full text link
    We propose a membership protocol for group commu-nications in mobile Internet. The protocol is called RGB, which is the acronym of “a Ring-based hierarchy of ac-cess proxies, access Gateways, and Border routers”. RGB runs in a parallel and distributed way in the sense that each network entity in the ring-based hierarchy maintains local information about its possible leader, previous, next, par-ent and child neighbors, and that each network entity inde-pendently collects/generates membership change informa-tion, which is propagated by the one-round membership al-gorithm concurrently running in all the logical rings. We prove that the proposed protocol is scalable in the sense that the scalability of a ring-based hierarchy is as good as that of a tree-based hierarchy. We also prove that the proposed protocol is reliable, in the sense that, with high probability of 99.500%, a ring-based hierarchy with up to 1000 access proxies attached by a large number of mobile hosts will not partition when node faulty probability is bounded by 0.1%; if at most 3 partitions are allowed, then the Function-Well probability of the hierarchy is 99.999 % accordingly. 1

    MUC1 Is a Downstream Target of STAT3 and Regulates Lung Cancer Cell Survival and Invasion

    Get PDF
    Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in human cancer including lung cancer and has been implicated in transformation, tumorigenicity, and metastasis. One putative downstream gene regulated by Stat3 is MUC1 which also has important roles in tumorigenesis. We determined if Stat3 regulates MUC1 in lung cancer cell lines and what function MUC1 plays in lung cancer cell biology. We examined MUC1 expression in non-small cell lung cancer (NSCLC) cell lines and found high levels of MUC1 protein expression associated with higher levels of tyrosine phosphorylated STAT3. STAT3 knockdown downregulated MUC1 expression whereas constitutive STAT3 expression increased MUC1 expression at mRNA and protein levels. MUC1 knockdown induced cellular apoptosis concomitant with reduced Bcl-XL and sensitized cells to cisplatin treatment. MUC1 knockdown inhibited tumor growth and metastasis in an orthotopic mouse model of lung cancer by activating apoptosis and inhibiting cell proliferation in vivo. These results demonstrate that constitutively activated STAT3 regulates expression of MUC1, which mediates lung cancer cell survival and metastasis in vitro and in vivo. MUC1 appears to be a cooperating oncoprotein with multiple oncogenic tyrosine kinase pathways and could be an effective target for the treatment of lung cancer

    Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins

    Get PDF
    Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia

    Fine Pathogen Discrimination within the APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria Species

    Get PDF
    Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized

    Global epidemiology of hip fractures: a study protocol using a common analytical platform among multiple countries

    Get PDF
    INTRODUCTION: Hip fractures are associated with a high burden of morbidity and mortality. Globally, there is wide variation in the incidence of hip fracture in people aged 50 years and older. Longitudinal and cross-geographical comparisons of health data can provide insights on aetiology, risk factors, and healthcare practices. However, systematic reviews of studies that use different methods and study periods do not permit direct comparison across geographical regions. Thus, the objective of this study is to investigate global secular trends in hip fracture incidence, mortality and use of postfracture pharmacological treatment across Asia, Oceania, North and South America, and Western and Northern Europe using a unified methodology applied to health records. METHODS AND ANALYSIS: This retrospective cohort study will use a common protocol and an analytical common data model approach to examine incidence of hip fracture across population-based databases in different geographical regions and healthcare settings. The study period will be from 2005 to 2018 subject to data availability in study sites. Patients aged 50 years and older and hospitalised due to hip fracture during the study period will be included. The primary outcome will be expressed as the annual incidence of hip fracture. Secondary outcomes will be the pharmacological treatment rate and mortality within 12 months following initial hip fracture by year. For the primary outcome, crude and standardised incidence of hip fracture will be reported. Linear regression will be used to test for time trends in the annual incidence. For secondary outcomes, the crude mortality and standardised mortality incidence will be reported. ETHICS AND DISSEMINATION: Each participating site will follow the relevant local ethics and regulatory frameworks for study approval. The results of the study will be submitted for peer-reviewed scientific publications and presented at scientific conferences
    corecore