816 research outputs found

    Manipulation of electronic and magnetic properties of M2_2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains

    Full text link
    Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. Recently synthesized two-dimensional transition metal carbides M2_2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr), known as MXenes, has aroused increasingly attentions in nanoelectronic technology due to their unusual properties. In this paper, first-principles calculations based on density functional theory are carried out to investigate the electronic and magnetic properties of M2_2C subjected to biaxial symmetric mechanical strains. At the strain-free state, all these MXenes exhibit no spontaneous magnetism except for Ti2_2C and Zr2_2C which show a magnetic moment of 1.92 and 1.25 ÎĽB\mu_B/unit, respectively. As the tensile strain increases, the magnetic moments of MXenes are greatly enhanced and a transition from nonmagnetism to ferromagnetism is observed for those nonmagnetic MXenes at zero strains. The most distinct transition is found in Hf2_2C, in which the magnetic moment is elevated to 1.5 ÎĽB\mu_B/unit at a strain of 15%. We further show that the magnetic properties of Hf2_2C are attributed to the band shift mainly composed of Hf(5dd) states. This strain-tunable magnetism can be utilized to design future spintronics based on MXenes

    99Tcm-N(NOEt)2 Uptake Kinetics Difference among KMB17 Human Embryonic Lung Diploid Fibroblast and Different Human Lung Cancer Cells

    Get PDF
    Background and objective PET/CT imaging is expensive, so searching the tumor imaging agent for SPECT/CT is necessary. 99Tcm-N(NOEt)2 [bis (N-ethoxy-N-ethyl dithiocarbamato) nitrido99Tcm (V)] can be uptaken by lung cancer cells and other cells alike. The aim of this study is to evaluate the distinctive value in lung tumor with 99Tcm-N(NOEt)2, the difference in its uptake kinetics in human embryonic lung diploid fibroblasts KMB17 and several kinds of lung cancer cells lines. Methods Firstly, six different cell culture medium which contained YTMLC Gejiu human lung squamous carcinoma cell, SPC-A1 human lung adenocarcinoma cell, AGZY low metastatic human lung adenocarcinoma, 973 high metastatic human lung adenocarcinoma cell, GLC-82 Gejiu human lung adenocarcinoma cell, and KMB17 human embryonic lung diploid fibroblast, respectively with equal cell density of 1×106/mL and the same volume were prepared; secondly, the same radioactive dose of 99Tcm-N(NOEt)2 was added into each sample and then 300 μL mixed sample was taken out respectively and cultured in 37 oC culture box; Finally, 5 min, 15 min, 30 min, 45 min, 60 min, 75 min, 90 min after cultivation, centrifuged each cultured sample and determined the intracellular radiocounts of each sample, calculated each cell sample’s uptake rate of 99Tcm-N(NOEt)2 at different time. Results Statistical difference was found among six cell samples, and the uptake rate sequence from high to low is 973 and SPC-A1>YTMLC>GLC-82>AGZY>KMB17 respectively; furthermore, 30 min-45 min after culture, the uptake rate reached stability, and the 45 min uptake rate of each sample was higher than its 96.7% uptake peak. Conclusion Based on the results above mentioned, it is supposed that there are discriminative clinical value when using 99Tcm-N(NOEt)2 as a tumor targeting imaging agent, and 30 min or so after injection may be the best imaging time in the early imaging stage

    Self-protected nanoscale thermometry based on spin defects in silicon carbide

    Full text link
    Quantum sensors with solid state electron spins have attracted considerable interest due to their nanoscale spatial resolution.A critical requirement is to suppress the environment noise of the solid state spin sensor.Here we demonstrate a nanoscale thermometer based on silicon carbide (SiC) electron spins.We experimentally demonstrate that the performance of the spin sensor is robust against dephasing due to a self protected machenism. The SiC thermometry may provide a promising platform for sensing in a noisy environment ,e.g. biological system sensing

    Gas adsorption on MoS2 monolayer from first-principles calculations

    Full text link
    First-principles calculations within density functional theory (DFT) have been carried out to investigate the adsorption of various gas molecules including CO, CO2, NH3, NO and NO2 on MoS2 monolayer in order to fully exploit the gas sensing capabilities of MoS2. By including van der Waals (vdW) interactions between gas molecules and MoS2, we find that only NO and NO2 can bind strongly to MoS2 sheet with large adsorption energies, which is in line with experimental observations. The charge transfer and the variation of electronic structures are discussed in view of the density of states and molecular orbitals of the gas molecules. Our results thus provide a theoretical basis for the potential applications of MoS2 monolayer in gas sensing and give an explanation for recent experimental findings.Comment: 15 pages, 5 figure

    Entwicklung einer Methode zur Messung der Oberflächenkonzentration ultrafeiner Partikel

    Get PDF
    Viele Studien kommen immer wieder zu dem Ergebnis, dass Partikel, insbesondere ultrafeine Partikel, mit negativen Auswirkungen verbunden auf die Gesundheit sind. Bislang ist noch nicht geklärt, welche Eigenschaften (wie z. B. Partikelmasse, Partikelanzahl, Partikeloberfläche usw.) ein Partikel aufweisen muss, um als Mass für negative Auswirkungen herangezogen zu werden. Jünste epidemiologische Studien haben gezeigt, dass sich luftgetragene Partikel, besser durch die Grössen "Partikelanzahl" bzw. "Partikelobfläche" beschreiben lassen, als durch die "Partikelmasse". Einige toxikologische Studien haben nachgewiesen, dass ultrafeine Partikel eines Werkstoffs giftiger sein können, als weniger klein Partikel mit der gleichem Masse des gleichen Werkstoffs. In weiteren Studien wurde aufgezeigt, dass Entzündung und Lungenflügeltumore mit der Partikeloberfläche der eingeatmeten in Zusammenhang stehen. Zusammenfassend ist zu erkennen, dass die Partikeloberfläche die Schlüsselgrösse für ultrafeine Partikel sein könnte. Folglich ist es von grosser Bedeutung, eine einfache Methode zur Messung der Partikeloberfläche zu finden. Im Rahmen dieser Dissertationsarbeit wird ein neue Methode zur Messung der Gesamtoberflächenkonzentration der Partikel, die einen Durchmesser von 20nm bis 100nm haben, entwickelt. Die Methode zur Bestimmung der Gesamtobflächenkonzentration basiert auf einem dreistufigen Ansatz: Partikel sind unipolar aufzuladen, die überschüssigen Ionen zu entfernen und die aufgeladenen Partikeln zu deponieren. Zuerst werden die Partikeln durch die Mischungen des Aerosolflusses mit freien Ionen aufgeladen. Dann werden die aufgeladenen Partikel durch einen Ionenabscheider geleitet, um die überschüssigen Ionen abzuscheiden. Damit wird eine Nebenwirkung der Ionen auf die spätere Messung des Partikelstromes vermieden. Die aufgeladenen Partikeln werden in einen elektrischen Abscheider, mit Hilfe eines elektrostatischen Felds abgeschieden. Der durch die abgeschiedenen Partikel verursachte Strom wird mit einem hochempfindlichen Elektrometer gemessen, um die Gesamtoberflächenkonzentration der Partikel zu bestimmen. Zur Verifizierung wurde ein Prototyp, einschliesslich eines Koronadiffusionaufladers, eines Ionenabscheiders und eines elektrischen Abscheiders entworfen und aufgebaut. Mehrere grundlegende Experimente wurden durchgeführt. Jede Komponente des Prototyps ist mit einem oder mehreren Parametern an der Partikelaufladeeffizienz und der Partikelabscheideffizienz beteiligt. Die durchgeführten Experimente konzentrieren sich einerseits auf die Bestimmung dieser Parameter und andererseits auf die Erforschung von Gesetzmässigkeiten zwischen diesen Parametern und dem Partikeldurchmesser. Diese Parameter beeinflussen direkt den Signalstrom, der durch die abgeschiedenen aufgeladenen Partikel verursacht wurde. Basierend auf die Experimenten wurden einige empirische Formeln durch die Approximation der Ergebnisse mit dem Potenzmodell abgeleitet. Die Gleichung, die den durch die abgeschiedenen aufgeladenen Partikel verursachten Signalstrom beschreibt, wurde abgeleitet. Diese Gleichung ist eine Funktion der oben genannten Parameter. Die Gültigkeit der Gleichungen wird durch den Vergleich des berechneten Signalstroms mit dem direkt gemessenen Signalstrom verifiziert. Der Vergleich wurde sowohl mit monodispersen als auch mit polydispersen Aerosol durchgeführt. Ausgehend von diesem theoretischen Ansatz wurden die Abhängigkeiten zwischen dem Signalstrom und dem Partikeldurchmesser ermittelt. Dieser Beziehung zeigt, dass der Signalstrom proportional zum Integral einer Exponentialfunktion des Partikeldurchmessers ist. Weitere Analysen zeigen, dass der Exponent dieser Exponentialfunktion durch die Änderung eines Betriebsparameters, der Abscheidespannung, eingestellt werden kann. Bei bestimmten Einstellungen lässt sich ein Exponent von 2 erreichen. Diese Tatsache weist darauf hin, dass die Gesamtpartikeloberflächenkonzentration durch die Messungen des Signalstroms berechnet werden kann. Abschließend wird die Gesamtpartikeloberflächenkonzentration, die vom gemessenen Strom abgeleitet wurde, mit der von einem SMPS unter den gleichen Betriebsbedingungen gemessenen Oberflächenkonzentration verglichen. Die Ergebnisse zeigen eine gute Übereinstimmung.Many studies have related particulate matter, especially ultrafine particles, to adverse effects on health but it is still unclear which particle property has the most significant health effects. Recent epidemiological studies have shown that adverse health effects associated to airborne particles may be better correlated with metrics such as particle number or particle surface area than particle mass. A number of toxicological studies have demonstrated that ultrafine particles of a material are more toxic than the same mass of fine particles of the same material. Recently studies have also shown that inflammation and lung tumours were correlated with particle surface area. In summary, particle surface area might possibly be key metric as shown by these studies. Therefore, it is of great importance to find a way to measure particle surface area, in particular the surface area of ultrafine particles. This dissertation proposes a method of measuring surface area concentration of ultrafine particles with size in range 20nm to 100nm. The measurement method is based on a three-step approach, including particle diffusion charging, ion precipitation and charged particle deposition. Particle charging was accomplished by mixing the aerosol flow with the ions generated from corona discharge. Charged particles then passed through an ion precipitator in order to remove the excess ions for the sake of eliminating their adverse effects on the later signal current measurement. After that charged particles entered an electrical precipitator where they were deposited by means of an electrostatic field. Finally signal current induced by the deposited charged particles were measured by a highly sensitive electrometer to infer the particle surface area concentration. In order to validate the proposed method, a prototype, including a corona diffusion charger, an ion precipitator and an electrical precipitator, was designed and built, and a number of experiments were performed. Each component of the prototype was associated with one or more parameters, which included the particle charging efficiency and mean charge (for diffusion charger) and the particle depositing efficiency (for electrical precipitator). The experiments carried out presently focused on measuring these parameters, and establishing their relations with particle diameter, since those parameters directly influenced the signal current induced by the deposited charged particles. Empirical formulas describing these parameters were obtained by fitting the experiment data using the power law model. The equation describing the signal current induced by the deposited charged particles was deduced, which was a function of above parameters. The validity of this equation was verified by comparing the signal current estimated based on this equation and the signal current measured directly. The comparison was performed by means of both monodisperse and polydisperse aerosol. Based on this equation as well as the obtained empirical formulas, the relationship between the signal current and the particle diameter was established. It shows that the signal current is proportional to the integration of an exponential function of the particle diameter, and the power of this exponential function can be adjusted by changing one of the operating parameters -- the deposition voltages. Experimental results show that the power of the exponential function can be equal to 2 by adjusting the deposition voltage to a specified value, which means that particle surface area concentration can be estimated by measuring the signal current at this voltage. Finally, the particle surface area concentration estimated from the measured current was compared to the particle surface area concentration calculated based on the experimental results at the same operating conditions, and the results shows that they agree with each other very well
    • …
    corecore