105 research outputs found

    Analysis on the aerodynamic performance of vertical axis wind turbine subjected to the change of wind velocity

    Get PDF
    AbstractReynolds averaged Navier-Stokes equations and Realizable kɛ− model were used in this paper, and the two dimensional unsteady flow field of the vertical axis wind turbine was simulated numerically at different wind velocity. The calculation results showed that the velocity in the region of wind turbine's rotation was much larger than the air flow of the upstream. The length of the wind turbine's downstream wake dispersion region was increased with the increase of the wind velocity. There is a much larger value of the eddy in the rear region of the wind turbine's rotational blades. And eddy existed in the downstream region of the wind turbine, and the larger velocity of cross flow, the larger value of the downstream flow's eddy. When the rotational speed was constant, with the increase in wind velocity, the variation of the wind turbine's total torque coefficient tended to smooth. The calculation results pointed out the direction for the follow-up study

    VEGF Promotes the Transcription of the Human PRL-3 Gene in HUVEC through Transcription Factor MEF2C

    Get PDF
    Phosphatase of regenerating liver 3 (PRL-3) is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s) underlying its enhanced expression and its function in endothelial cells remain unknown. Here, we report that vascular endothelial growth factor (VEGF) can induce PRL-3 transcription in human umbilical vein endothelial cells (HUVEC). An analysis of its 5′UTR revealed that PRL-3 transcription is initiated from two distinct sites, which results in the formation of the two transcripts, PRL-3-iso1 and PRL-3-iso2, but only the latter is up-regulated in HUVEC by VEGF. The PRL-3-iso2 promoter region includes two functional MEF2 (myocyte enhancer factor2) binding sites. The over-expression of the constitutively active form of MEF2C promotes the abundance of the PRL-3-iso2 transcript in a number of human cell lines. The siRNA-induced knockdown of MEF2C abolished the stimulative effect of VEGF on PRL-3 transcript in HUVEC, indicating that the VEGF-induced promotion of PRL-3 expression requires the presence of MEF2C. Finally, blocking PRL-3 activity or expression suppresses tube formation by HUVEC. We suggest that PRL-3 functions downstream of the VEGF/MEF2C pathway in endothelial cells and may play an important role in tumor angiogenesis

    Preparation of TiO 2

    Get PDF
    Photocatalysts comprising nanosized TiO2 particles on activated carbon (AC) were prepared by a sol-gel method. The TiO2/AC composites were characterized by X-ray diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption, scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive X-ray (EDX). Their photocatalytic activities were studied through the degradation of Rhodamine B (RhB) in photocatalytic reactor at room temperature under ultraviolet (UV) light irradiation and the effect of loading cycles of TiO2 on the structural properties and photocatalytic activity of TiO2/AC composites was also investigated. The results indicate that the anatase TiO2 particles with a crystal size of 10–20 nm can be deposited homogeneously on the AC surface under calcination at 500°C. The loading cycle plays an important role in controlling the loading amount of TiO2 and morphological structure and photocatalytic activity of TiO2/AC composites. The porosity parameters of these composite photocatalysts such as specific surface area and total pore volume decrease whereas the loading amount of TiO2 increases. The TiO2/AC composite synthesized at 2 loading cycles exhibits a high photocatalytic activity in terms of the loading amount of TiO2 and as high as 93.2% removal rate for RhB from the 400 mL solution at initial concentration of 2 × 10−5 mol/L under UV light irradiation

    Oxygen Reduction Activity and Stability of Composite Pdx/Co-Nanofilms/C Electrocatalysts in Acid and Alkaline Media

    Get PDF
    The morphology tuning of Pd and Pd-M nanoparticles is one of the significant strategies to control the catalytic activity toward oxygen reduction reaction (ORR). In this study, composite Pdx/Co-nanofilms/C electrocatalysts of Pd nanoparticles implanted onto Co nanofilms were synthesized on an immiscible ionic liquid (IL)/water interface for ORR. The Pd nanoparticles implanted onto Co nanofilms show a marked distortion of crystal lattice and surface roughness. These Pdx/Co-nanofilms/C electrocatalysts exhibit enhanced activity for ORR compared with Pd/C and PdxCo/C catalysts in both acid and alkaline solutions, in which the Pd3/Co-nanofilms/C catalyst displays the highest ORR mass activity. The superior ORR mass activities of the fabricated Pdx/Co-nanofilms/C catalysts may be mainly attributed to their larger catalytic areas, which are conferred by the rough surface of Pd nanoparticles with a distorted crystal lattice, and the synergistic effect between the surface Pd atoms and the 2D Co nanofilm substrate. The relationship between ORR mass activity and Pd/Co atom ratio varies in different electrolytes. Furthermore, by using proper heat-treatment methods, the Pdx/Co-nanofilms/C catalysts exhibit improved cycling stability compared with pure Pd/C catalyst after extended potential cycling

    Hydrothermal synthesis of SnO 2

    No full text

    Hydrothermal Synthesis of CeO<sub>2</sub>-SnO<sub>2</sub> Nanoflowers for Improving Triethylamine Gas Sensing Property

    No full text
    Developing the triethylamine sensor with excellent sensitivity and selectivity is important for detecting the triethylamine concentration change in the environment. In this work, flower-like CeO2-SnO2 composites with different contents of CeO2 were successfully synthesized by the one-step hydrothermal reaction. Some characterization methods were used to research the morphology and structure of the samples. Gas-sensing performance of the CeO2-SnO2 gas sensor was also studied and the results show that the flower-like CeO2-SnO2 composite showed an enhanced gas-sensing property to triethylamine compared to that of pure SnO2. The response value of the 5 wt.% CeO2 content composite based sensor to 200 ppm triethylamine under the optimum working temperature (310 &#176;C) is approximately 3.8 times higher than pure SnO2. In addition, CeO2-SnO2 composite is also significantly more selective for triethylamine than pure SnO2 and has better linearity over a wide range of triethylamine concentrations. The improved gas-sensing mechanism of the composites toward triethylamine was also carefully discussed

    Highly Sensitive Acetone Gas Sensor Based on g-C3N4 Decorated MgFe2O4 Porous Microspheres Composites

    No full text
    The g-C3N4 decorated magnesium ferrite (MgFe2O4) porous microspheres composites were successfully obtained via a one-step solvothermal method. The structure and morphology of the as-prepared MgFe2O4/g-C3N4 composites were characterized by the techniques of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermal gravity and differential scanning calorimeter (TG&ndash;DSC) and N2-sorption. The gas sensing properties of the samples were measured and compared with a pure MgFe2O4-based sensor. The maximum response of the sensor based on MgFe2O4/g-C3N4 composites with 10 wt % g-C3N4 content to acetone is improved by about 145 times, while the optimum temperature was lowered by 60 &deg;C. Moreover, the sensing mechanism and the reason for improving gas sensing performance were also discussed

    Synthesis of Porous Hierarchical In<sub>2</sub>O<sub>3</sub> Nanostructures with High Methane Sensing Property at Low Working Temperature

    No full text
    Different hierarchical porous In2O3 nanostructures were synthesized by regulating the hydrothermal time and combining it with a self-pore-forming method. The gas-sensing test results show that the response of the sensor based on In2O3 obtained after hydrothermal reaction for 48 h is about 10.4 to 500 ppm methane. Meanwhile, it possesses good reproducibility, stability, selectivity and moisture resistance as well as a good exponential linear relationship between the response to methane and its concentration. In particular, the sensor based on In2O3 can detect a wide range of methane (10~2000 ppm) at near-room temperature (30 °C). The excellent methane sensitivity of the In2O3 sensor is mainly due to its unique nanostructure, which has the advantages of both porous and hierarchical structures. Combined with the DFT calculation, it is considered that the sensitive mechanism is mainly controlled by the surface adsorbed oxygen model. This work provides a feasible strategy for enhancing the gas sensitivity of In2O3 toward methane at low temperatures
    • …
    corecore