847 research outputs found
Leading Undergraduate Students to Big Data Generation
People are facing a flood of data today. Data are being collected at
unprecedented scale in many areas, such as networking, image processing,
virtualization, scientific computation, and algorithms. The huge data nowadays
are called Big Data. Big data is an all encompassing term for any collection of
data sets so large and complex that it becomes difficult to process them using
traditional data processing applications. In this article, the authors present
a unique way which uses network simulator and tools of image processing to
train students abilities to learn, analyze, manipulate, and apply Big Data.
Thus they develop students handson abilities on Big Data and their critical
thinking abilities. The authors used novel image based rendering algorithm with
user intervention to generate realistic 3D virtual world. The learning outcomes
are significant
An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display
We present a tele-immersive system that enables people to interact with each
other in a virtual world using body gestures in addition to verbal
communication. Beyond the obvious applications, including general online
conversations and gaming, we hypothesize that our proposed system would be
particularly beneficial to education by offering rich visual contents and
interactivity. One distinct feature is the integration of egocentric pose
recognition that allows participants to use their gestures to demonstrate and
manipulate virtual objects simultaneously. This functionality enables the
instructor to ef- fectively and efficiently explain and illustrate complex
concepts or sophisticated problems in an intuitive manner. The highly
interactive and flexible environment can capture and sustain more student
attention than the traditional classroom setting and, thus, delivers a
compelling experience to the students. Our main focus here is to investigate
possible solutions for the system design and implementation and devise
strategies for fast, efficient computation suitable for visual data processing
and network transmission. We describe the technique and experiments in details
and provide quantitative performance results, demonstrating our system can be
run comfortably and reliably for different application scenarios. Our
preliminary results are promising and demonstrate the potential for more
compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201
Teaching Big Data by Three Levels of Projects
Big Data is a new topic and it is very hot nowadays. However, it is difficult to teach Big Data effectively by regular lecture. In this paper, we present a unique way to teach students Big Data by developing three levels of projects from easy to difficult. The three levels projects are initializing project, designing project, and comprehensive projects. They are developed to involve students in Big Data, train students\u27 skills to analyze concrete problems of Big Data, and develop students\u27 creative abilities and their abilities to solve real setting problems
Structure Preserving Large Imagery Reconstruction
With the explosive growth of web-based cameras and mobile devices, billions
of photographs are uploaded to the internet. We can trivially collect a huge
number of photo streams for various goals, such as image clustering, 3D scene
reconstruction, and other big data applications. However, such tasks are not
easy due to the fact the retrieved photos can have large variations in their
view perspectives, resolutions, lighting, noises, and distortions.
Fur-thermore, with the occlusion of unexpected objects like people, vehicles,
it is even more challenging to find feature correspondences and reconstruct
re-alistic scenes. In this paper, we propose a structure-based image completion
algorithm for object removal that produces visually plausible content with
consistent structure and scene texture. We use an edge matching technique to
infer the potential structure of the unknown region. Driven by the estimated
structure, texture synthesis is performed automatically along the estimated
curves. We evaluate the proposed method on different types of images: from
highly structured indoor environment to natural scenes. Our experimental
results demonstrate satisfactory performance that can be potentially used for
subsequent big data processing, such as image localization, object retrieval,
and scene reconstruction. Our experiments show that this approach achieves
favorable results that outperform existing state-of-the-art techniques
Automatic Objects Removal for Scene Completion
With the explosive growth of web-based cameras and mobile devices, billions
of photographs are uploaded to the internet. We can trivially collect a huge
number of photo streams for various goals, such as 3D scene reconstruction and
other big data applications. However, this is not an easy task due to the fact
the retrieved photos are neither aligned nor calibrated. Furthermore, with the
occlusion of unexpected foreground objects like people, vehicles, it is even
more challenging to find feature correspondences and reconstruct realistic
scenes. In this paper, we propose a structure based image completion algorithm
for object removal that produces visually plausible content with consistent
structure and scene texture. We use an edge matching technique to infer the
potential structure of the unknown region. Driven by the estimated structure,
texture synthesis is performed automatically along the estimated curves. We
evaluate the proposed method on different types of images: from highly
structured indoor environment to the natural scenes. Our experimental results
demonstrate satisfactory performance that can be potentially used for
subsequent big data processing: 3D scene reconstruction and location
recognition.Comment: 6 pages, IEEE International Conference on Computer Communications
(INFOCOM 14), Workshop on Security and Privacy in Big Data, Toronto, Canada,
201
Monetary policy and rational asset bubbles: Comments
We revisit GalĂ’s (2014) analysis by extending his model to incorporate persistent bubble shocks. We find that, under adaptive learning, a stable bubbly steady state and the associated sunspot solutions under optimal monetary policy are not E-stable. When deriving the unique forward-looking minimum stable variable (MSV) solution around an unstable bubbly steady state, we obtain results that are consistent with the conventional views: leaning against the wind policy reduces bubble volatility and is optimal. Such a steady state and the associated MSV solution are E-stable.Accepted manuscrip
Hole Detection and Shape-Free Representation and Double Landmarks Based Geographic Routing in Wireless Sensor Networks
In wireless sensor networks, an important issue of Geographic Routing is
local minimum problem, which is caused by hole that blocks the greedy
forwarding process. To avoid the long detour path, recent research focuses on
detecting the hole in advance, then the nodes located on the boundary of the
hole advertise the hole information to the nodes near the hole
- …