2,875 research outputs found

    Necessary Condition for Near Optimal Control of Linear Forward-backward Stochastic Differential Equations

    Full text link
    This paper investigates the near optimal control for a kind of linear stochastic control systems governed by the forward backward stochastic differential equations, where both the drift and diffusion terms are allowed to depend on controls and the control domain is not assumed to be convex. In the previous work (Theorem 3.1) of the second and third authors [\textit{% Automatica} \textbf{46} (2010) 397-404], some problem of near optimal control with the control dependent diffusion is addressed and our current paper can be viewed as some direct response to it. The necessary condition of the near-optimality is established within the framework of optimality variational principle developed by Yong [\textit{SIAM J. Control Optim.} \textbf{48} (2010) 4119--4156] and obtained by the convergence technique to treat the optimal control of FBSDEs in unbounded control domains by Wu [% \textit{Automatica} \textbf{49} (2013) 1473--1480]. Some new estimates are given here to handle the near optimality. In addition, an illustrating example is discussed as well.Comment: To appear in International Journal of Contro

    Tunable Intrinsic Plasmons due to Band Inversion in Topological Materials

    Get PDF
    The band inversion has led to rich physical effects in both topological insulators and topological semimetals. It has been found that the inverted band structure with the Mexican-hat dispersion could enhance the interband correlation leading to a strong intrinsic plasmon excitation. Its frequency ranges from several meV\mathrm{meV} to tens of meV\mathrm{meV} and can be effectively tuned by the external fields. The electron-hole asymmetric term splits the peak of the plasmon excitation into double peaks. The fate and properties of this plasmon excitation can also act as a probe to characterize the topological phases even in the lightly doped systems. We numerically demonstrate the impact of the band inversion on plasmon excitations in magnetically doped thin films of three-dimensional strong topological insulators, V- or Cr-doped (Bi, Sb)2_2Te3_3, which support the quantum anomalous Hall states. Our work thus sheds some new light on the potential applications of topological materials in plasmonics.Comment: 6 pages, 5 figures, Accepted in PR
    corecore