16 research outputs found

    Bubble Plume Target Detection Method of Multibeam Water Column Images Based on Bags of Visual Word Features

    No full text
    Bubble plumes, as main manifestations of seabed gas leakage, play an important role in the exploration of natural gas hydrate and other resources. Multibeam water column images have been widely used in detecting bubble plume targets in recent years because they can wholly record water column and seabed backscatter strengths. However, strong noises in multibeam water column images cause many issues in target detection, and traditional target detection methods are mainly used in optical images and are less efficient for noise-affected sonar images. To improve the detection accuracy of bubble plume targets in water column images, this study proposes a target detection method based on the bag of visual words (BOVW) features and support vector machine (SVM) classifier. First, the characteristics of bubble plume targets in water column images are analyzed, with the conclusion that the BOVW features can well express the gray scale, texture, and shape characteristics of bubble plumes. Second, the BOVW features are constructed following steps of point description extraction, description clustering, and feature encoding. Third, the quadratic SVM classifier is used for the recognition of target images. Finally, a procedure of bubble plume target detection in water column images is described. In the experiment using the measured data in the Strait of Georgia, the proposed method achieved 98.6% recognition accuracy of bubble plume targets in validation sets, and 91.7% correct detection rate of the targets in water column images. By comparison with other methods, the experimental results prove the validity and accuracy of the proposed method, and show potential applications of our method in the exploration and research on ocean resources

    A New Method for Acquisition of High-Resolution Seabed Topography by Matching Seabed Classification Images

    No full text
    The multibeam echo sounders (MBES) can acquire accurate positional but low-resolution seabed terrain and images, whereas side scan sonars (SSS) can only acquire inaccurate positional but high-resolution seabed images. In this study, a new method for superimposing corrected-positional SSS images on multibeam bathymetric terrain is proposed to obtain high-resolution and accurate-positional seabed topography using traditional MBES and SSS. Three steps, including the normalization by the z-score, sediment classification by the k-means++ algorithm, and denoising processing using morphological operations, are processed for both MBES and SSS images to obtain the corresponding sediment images. Next, a segmented matching method is given based on the common sediment distributions and features of MBES and SSS sediment images. The two kinds of sediment images are matched segmentally using the speeded up robust features algorithm and random sample consensus algorithm. Then, the positions of SSS images are corrected segmentally using thin plate splines based on matching points. Finally, the corrected SSS image is superimposed on MBES bathymetric terrain, based on positional relationship. The proposed method was verified through experiments, and high image resolution and high position accuracy seabed topography were obtained. Moreover, the performances of the method are discussed, and some conclusions are drawn according to the experiments and discussions

    Study on Improvement of Multibeam Backscatter Angular Response Model

    No full text
    Because multibeam backscatter data is greatly affected by the AR (angular response) and the AR correction models are not perfect in the complex seabed, the multibeam image quality is seriously reduced. This paper puts forward an improved AR model and a correction method. Firstly, we average continual pings to obtain the AR curve; Secondly, we give out the extraction method of AR parameters; Thirdly, we use the parameters to establish the improved AR model of different sections of one ping; Finally, we use the model to weaken the AR effect in multibeam backscatter images. The validities of the method have been verified by the experiments of the field multibeam acoustic backscatter

    Disturbances rejection optimization based on improved two-degree-of-freedom LADRC for permanent magnet synchronous motor systems

    No full text
    Permanent magnet synchronous motor (PMSM) speed control systems with conventional linear active disturbance rejection control (CLADRC) strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances. In order to address these issues, this paper proposes an improved two-degree-of-freedom LADRC (TDOF-LADRC) strategy, which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning. PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately. Moreover, to evaluate the control performance of the TDOF-LADRC strategy, its stability is proven, and the influence of each controller parameter on the system control performance is analyzed. Based on it, a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances. Finally, experiments are performed on a 750 W PMSM experimental platform, and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system

    Rapid Analysis of Alcohol Content During the Green Jujube Wine Fermentation by FT-NIR

    No full text
    The near-infrared (NIR) spectroscopy combined with partial least square regression (PLS) were applied for the prediction of the alcohol content of jujube wine. The NIR spectroscopy was used to collect the spectral data of the jujube wine samples during fermentation and the data were used to establish the quantitative model of alcohol content to achieve rapid on-line detection. The NIR spectroscopy in the range of 950 to 1650 nm from jujube wine were collected and pre-treated by MSC (Multiplicative Scatter Correction) and FD (First Derivative). The alcohol content was measured with alcohol meter. Spectral wavelength selection and latent variables were optimized for the lowest root mean square errors. The results show that the FD - PLS model, which yielded R2 of 0.9246 and RMSEC of 0.6572, is superior to the MSC- PLS model. Results confirmed that NIR spectroscopy is a promising technique for routine assessment of alcohol content of jujube wine and is a viable and advantageous alternative to the chemical procedures involving laborious extractions. The feasibility of the method was thus verified

    Designing orthotropic materials for negative or zero compressibility

    No full text
    There has been considerable interest in materials exhibiting negative or zero compressibility. Such materials are desirable for various applications. A number of models or mechanisms have been proposed to characterize the unusual phenomena of negative linear compressibility (NLC) and negative area compressibility (NAC) in natural or synthetic systems. In this paper we propose a general design technique for finding metamaterials with negative or zero compressibility by using a topology optimization approach. Based on the bi-directional evolutionary structural optimization (BESO) method, we establish a systematic computational procedure and present a series of designs of orthotropic materials with various magnitudes of negative compressibility, or with zero compressibility, in one or two directions. A physical prototype of one of such metamaterials is fabricated using a 3D printer and tested in the laboratory under either unidirectional loading or triaxial compression. The experimental results compare well with the numerical predictions. This research has demonstrated the feasibility of designing and fabricating metamaterials with negative or zero compressibility and paved the way towards their practical applications
    corecore