3,567 research outputs found
A stochastic-variational model for soft Mumford-Shah segmentation
In contemporary image and vision analysis, stochastic approaches demonstrate
great flexibility in representing and modeling complex phenomena, while
variational-PDE methods gain enormous computational advantages over Monte-Carlo
or other stochastic algorithms. In combination, the two can lead to much more
powerful novel models and efficient algorithms. In the current work, we propose
a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of
mixture image patterns. Unlike the classical hard Mumford-Shah segmentation,
the new model allows each pixel to belong to each image pattern with some
probability. We show that soft segmentation leads to hard segmentation, and
hence is more general. The modeling procedure, mathematical analysis, and
computational implementation of the new model are explored in detail, and
numerical examples of synthetic and natural images are presented.Comment: 22 page
- …