90 research outputs found

    Intelligent Perception Control System of Railway Level Crossing Gate Based on TRIZ Theory

    Get PDF
    TRIZ theory is an innovative method to analyse problems and solve them, which is widely used in many fields. In this paper, TRIZ theory is used to improve the design of railway crossing guardrail system. The use of nine-screen analysis, functional analysis, cause-effect chain analysis and other tools to analyse the problem of poor manual control effect in the railway crossing guardrail system, the use of technical contradictions, physical contradictions and other tools to improve the system design, effectively reduce the possibility of danger when cars and pedestrians cross railway crossings, improve the traffic safety and traffic order of the railway level crossing, and reduce the work burden of railway crossing caretakers

    Effect of Narcissistic Personality on Entrepreneurial Intention Among College Students: Mediation Role of Entrepreneurial Self-Efficacy

    Get PDF
    Exploring the factors influencing entrepreneurial intention is crucial to entrepreneurial practice and education. For a comprehensive understanding of the influence of narcissistic personality on entrepreneurial intention, this study analyzed the relationship between narcissistic personality, entrepreneurial self-efficacy, and entrepreneurial intention in college students sampled from three higher vocational colleges in Beijing, China. A total of 252 valid questionnaires were collected. The results show that the narcissistic personality of the college students has a significant positive effect on entrepreneurial intention and entrepreneurial self-efficacy. Entrepreneurial self-efficacy of the college students has a significant positive effect on entrepreneurial intention and plays a partial mediation role in the relationship between narcissistic personality and entrepreneurial intention. Thus, the study results provide some reference for further improving entrepreneurial practice and education

    Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2_{2} transistor

    Full text link
    Atomically-thin 2D semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their full acceptance as compliant materials for integration in logic devices. Two key-components to master are the barriers at metal/semiconductor interfaces and the mobility of the semiconducting channel, which endow the building-blocks of pn{pn} diode and field effect transistor. Here, we have devised a reverted stacking technique to intercalate a wrinkle-free h-BN tunnel layer between MoS2_{2} channel and contacting electrodes. Vertical tunnelling of electrons therefore makes it possible to suppress the Schottky barriers and Fermi level pinning, leading to homogeneous gate-control of the channel chemical potential across the bandgap edges. The observed unprecedented features of ambipolar pn{pn} to np{np} diode, which can be reversibly gate tuned, paves the way for future logic applications and high performance switches based on atomically thin semiconducting channel.Comment: 23 pages, 5 main figures + 9 SI figure

    kNN-CLIP: retrieval enables training-free segmentation on continually expanding large vocabularies

    Get PDF
    Rapid advancements in continual segmentation have yet to bridge the gap of scaling to large continually expanding vocabularies under compute-constrained scenarios. We discover that traditional continual training leads to catastrophic forgetting under compute constraints, unable to outperform zero-shot segmentation methods. We introduce a novel strategy for semantic and panoptic segmentation with zero forgetting, capable of adapting to continually growing vocabularies without the need for retraining or large memory costs. Our training-free approach, kNN-CLIP, leverages a database of instance embeddings to enable open-vocabulary segmentation approaches to continually expand their vocabulary on any given domain with a single-pass through data, while only storing embeddings minimizing both compute and memory costs. This method achieves state-of-the-art mIoU performance across large-vocabulary semantic and panoptic segmentation datasets. We hope kNN-CLIP represents a step forward in enabling more efficient and adaptable continual segmentation, paving the way for advances in real-world large-vocabulary continual segmentation methods

    A Comprehensive Survey on Deep Graph Representation Learning

    Full text link
    Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future

    Skywork: A More Open Bilingual Foundation Model

    Full text link
    In this technical report, we present Skywork-13B, a family of large language models (LLMs) trained on a corpus of over 3.2 trillion tokens drawn from both English and Chinese texts. This bilingual foundation model is the most extensively trained and openly published LLMs of comparable size to date. We introduce a two-stage training methodology using a segmented corpus, targeting general purpose training and then domain-specific enhancement training, respectively. We show that our model not only excels on popular benchmarks, but also achieves \emph{state of the art} performance in Chinese language modeling on diverse domains. Furthermore, we propose a novel leakage detection method, demonstrating that test data contamination is a pressing issue warranting further investigation by the LLM community. To spur future research, we release Skywork-13B along with checkpoints obtained during intermediate stages of the training process. We are also releasing part of our SkyPile corpus, a collection of over 150 billion tokens of web text, which is the largest high quality open Chinese pre-training corpus to date. We hope Skywork-13B and our open corpus will serve as a valuable open-source resource to democratize access to high-quality LLMs
    • …
    corecore