11 research outputs found

    A Human–Robot Collaborative System for Robust Three-Dimensional Mapping

    No full text

    Experimental Study on Low Carbonization of Green Building Based on New Membrane Structure Solar Sustainable Heat Collection

    No full text
    In recent years, energy consumption has continuously been increasing, and the energy consumption proportion in buildings has risen yearly. In order to promote the carbon-neutral goal of carbon peaking, the building sector realizes green and low-carbon transformation. This paper proposes a new type of solar flat plate collector with an additional transparent cover made by the ETFE film, which is tested for thermal performance under different environmental and operational parameters. The Ansys Fluent software was used to build a three-dimensional steady-state model of the collector, which can simulate the collector components’ temperature and the mass outlet temperature under the test conditions. The collector’s instantaneous heat collection efficiency curve fitted by comparing and analyzing the theoretical, experimental, and simulated data. The instantaneous efficiency intercept was 0.72, and the heat loss coefficient was 3.94 W/(m2·K). The results show that the collector efficiency of the ETFE film structure collector is 18.6% higher, and the heat loss coefficient is 27.3% lower than that of an ordinary collector under standard mass flow conditions

    Experimental Study on Low Carbonization of Green Building Based on New Membrane Structure Solar Sustainable Heat Collection

    No full text
    In recent years, energy consumption has continuously been increasing, and the energy consumption proportion in buildings has risen yearly. In order to promote the carbon-neutral goal of carbon peaking, the building sector realizes green and low-carbon transformation. This paper proposes a new type of solar flat plate collector with an additional transparent cover made by the ETFE film, which is tested for thermal performance under different environmental and operational parameters. The Ansys Fluent software was used to build a three-dimensional steady-state model of the collector, which can simulate the collector components’ temperature and the mass outlet temperature under the test conditions. The collector’s instantaneous heat collection efficiency curve fitted by comparing and analyzing the theoretical, experimental, and simulated data. The instantaneous efficiency intercept was 0.72, and the heat loss coefficient was 3.94 W/(m2·K). The results show that the collector efficiency of the ETFE film structure collector is 18.6% higher, and the heat loss coefficient is 27.3% lower than that of an ordinary collector under standard mass flow conditions

    Robot Semantic Mapping through Wearable Sensor-based Human Activity Recognition

    No full text
    Abstract-Semantic information can help both humans and robots to understand their environments better. In order to obtain semantic information efficiently and link it to a metric map, we present a semantic mapping approach through human activity recognition in an indoor human-robot coexisting environment. An intelligent mobile robot platform can create a 2D metric map, while human activity can be recognized using motion data from wearable motion sensors mounted on a human subject. Combined with pre-learned models of activity-to-furniture type association and robot pose estimates, the robot can determine the distribution of the furniture types on the 2D metric map. Simulations and real world experiments demonstrate that the proposed method is able to create a reliable metric map with accurate semantic information. Index Terms-semantic map, human activity recognition, wearable sensor, simultaneous localization and mapping (SLAM)

    A Human-Vehicle Collaborative Driving Framework for Driver Assistance

    No full text

    Characterization of the VP39 Envelope Protein from Singapore grouper iridovirus

    No full text
    Singapore grouper iridovirus (SGIV) is a major pathogen that causes heavy economic losses to the grouper aquaculture industry in China and Southeast Asian countries. In the present study, a viral envelope protein, VP39, encoded by SGIV ORF39L, was identified and characterized. SGIV ORF39L was found in all sequenced iridoviruses, and is now considered to be a core gene of the family Iridoviridae. ORF39L was classified as a late gene during in vitro infection using reverse transcription-polymerase chain reaction, western blotting, and a drug inhibition analysis. An indirect immunofluorescence assay revealed that the VP39 protein was confined to the cytoplasm, especially at viral assembly sites. Western blot and matrix-assisted laser desorption/ionization-time of flight tandem mass spectro- metry analyses suggested that VP39 is an envelope protein. Immunogold electron microscopy further confirmed that VP39 is a viral envelope protein. Furthermore, a mouse anti-VP39 polyclonal antibody exhibited SGIV-neutralizing activity in vitro, suggesting that VP39 is involved in SGIV infection. Taken together, the current data suggest that VP39 represents a conserved envelope protein of iridoviruses that contributes to viral infection.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Chiral Separation and Determination of Etoxazole Enantiomers in Vegetables by Normal-Phase and Reverse-Phase High Performance Liquid Chromatography

    No full text
    The chiral separation of etoxazole enantiomers on Lux Cellulose-1, Lux Cellulose-3, Chiralpak IC, and Chiralpak AD chiral columns was carefully investigated by normal-phase high performance liquid chromatography and reverse-phase high performance liquid chromatography (HPLC). Hexane/isopropanol, hexane/n-butanol, methanol/water, and acetonitrile/water were used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase component, mobile phase ratio, and temperature on etoxazole separation were also studied. Etoxazole enantiomers were baseline separated on Lux Cellulose-1, Chiralpak IC, and Chiralpak AD chiral columns, and partially separated on Lux Cellulose-3 chiral column under normal-phase HPLC. However, the complete separation on Lux Cellulose-1, Chiralpak IC, and partial separation on Chiralpak AD were obtained under reverse-phase HPLC. Normal-phase HPLC presented better resolution for etoxazole enantiomers than reverse-phase HPLC. Thermodynamic parameters, including ΔH and ΔS, were also calculated based on column temperature changes from 10 °C to 40 °C, and the maximum resolutions (Rs) were not always acquired at the lowest temperature. Furthermore, the optimized method was successfully applied to determine etoxazole enantiomers in cucumber, cabbage, tomato, and soil. The results of chiral separation efficiency of etoxazole enantiomers under normal-phase and reverse-phase HPLC were compared, and contribute to the comprehensive environmental risk assessment of etoxazole at the enantiomer level

    Effect of plasma-activated lactic acid on microbiota composition and quality of puffer fish (Takifugu obscurus) fillets during chilled storage

    No full text
    Fresh puffer fish (Takifugu obscurus) are susceptible to microbial contamination and have a very short shelf-life of chilled storage. Hence, this study aimed to evaluate the effects of plasma-activated lactic acid (PALA) on microbiota composition and quality attributes of puffer fish fillets during chilled storage. The results showed that PALA treatment effectively reduced the growth of bacteria and attenuated changes in physicochemical indicators (total volatile basic nitrogen, pH value, K value, and biogenic amines) of puffer fish fillets. Additionally, insignificant changes were observed in lipid oxidation during the first 8 days (p > 0.05). Illumina-MiSeq high-throughput sequencing revealed that PALA effectively inhibited the growth of Pseudomonas in puffer fish fillets and maintained the diverse characteristics of the microbial community. In combination with sensory analysis, PALA extended the shelf life of puffer fish fillets for 4 days, suggesting that PALA could be considered a potential fish fillet preservation method
    corecore