686 research outputs found
Channel Covariance Matrix Estimation via Dimension Reduction for Hybrid MIMO MmWave Communication Systems
Hybrid massive MIMO structures with lower hardware complexity and power
consumption have been considered as a potential candidate for millimeter wave
(mmWave) communications. Channel covariance information can be used for
designing transmitter precoders, receiver combiners, channel estimators, etc.
However, hybrid structures allow only a lower-dimensional signal to be
observed, which adds difficulties for channel covariance matrix estimation. In
this paper, we formulate the channel covariance estimation as a structured
low-rank matrix sensing problem via Kronecker product expansion and use a
low-complexity algorithm to solve this problem. Numerical results with uniform
linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to
demonstrate the effectiveness of our proposed method
Influence of pore structures on the mechanical behavior of low-permeability sandstones: numerical reconstruction and analysis
OpenNet: Incremental Learning for Autonomous Driving Object Detection with Balanced Loss
Automated driving object detection has always been a challenging task in
computer vision due to environmental uncertainties. These uncertainties include
significant differences in object sizes and encountering the class unseen. It
may result in poor performance when traditional object detection models are
directly applied to automated driving detection. Because they usually presume
fixed categories of common traffic participants, such as pedestrians and cars.
Worsely, the huge class imbalance between common and novel classes further
exacerbates performance degradation. To address the issues stated, we propose
OpenNet to moderate the class imbalance with the Balanced Loss, which is based
on Cross Entropy Loss. Besides, we adopt an inductive layer based on gradient
reshaping to fast learn new classes with limited samples during incremental
learning. To against catastrophic forgetting, we employ normalized feature
distillation. By the way, we improve multi-scale detection robustness and
unknown class recognition through FPN and energy-based detection, respectively.
The Experimental results upon the CODA dataset show that the proposed method
can obtain better performance than that of the existing methods
- …
