102 research outputs found

    Optical Properties and Radiative Forcing of Aged BC due to Hygroscopic Growth: Effects of the Aggregate Structure

    Get PDF
    Black carbon (BC) particles become hydrophilic after mixing with soluble matter in the atmosphere, and their optical and radiative properties can be significantly modified accordingly. This study investigates the impact of aggregate structure on optical and radiative properties of aged BC, that is, BC coated by sulfate or organic aerosols, especially during hygroscopic growth. A more realistic BC morphology based on fractal aggregates is considered, and inhomogeneous mixtures of BC aggregates are treated more realistically (with respect to particle geometries) in the multiple sphere T‐matrix method for optical property simulations. As relative humidity increases, BC extinction is significantly enhanced due to an increase in scattering, and the enhancement depends on the amount and hydrophilicity of the coating. The absorption exhibits less variation during hygroscopic growth because the coating of aerosols already leads to BC absorption close to the maximum. Furthermore, hygroscopic growth not only results in negative radiative forcing (RF) at the top of the atmosphere but also slightly weakens the absorption in the atmosphere (inducing a negative RF in the atmosphere). Compared to the more realistic model with BC as aggregates, the currently popular core‐shell model reasonably approximates the top of the atmosphere RF but underestimates the atmospheric RF due to hygroscopic growth by up to 40%. Furthermore, for the RF caused by internal mixing, the core‐shell model overestimates the RFs at the surface and in the atmosphere by ~10%

    Optical Properties and Radiative Forcing of Aged BC due to Hygroscopic Growth: Effects of the Aggregate Structure

    Get PDF
    Black carbon (BC) particles become hydrophilic after mixing with soluble matter in the atmosphere, and their optical and radiative properties can be significantly modified accordingly. This study investigates the impact of aggregate structure on optical and radiative properties of aged BC, that is, BC coated by sulfate or organic aerosols, especially during hygroscopic growth. A more realistic BC morphology based on fractal aggregates is considered, and inhomogeneous mixtures of BC aggregates are treated more realistically (with respect to particle geometries) in the multiple sphere T‐matrix method for optical property simulations. As relative humidity increases, BC extinction is significantly enhanced due to an increase in scattering, and the enhancement depends on the amount and hydrophilicity of the coating. The absorption exhibits less variation during hygroscopic growth because the coating of aerosols already leads to BC absorption close to the maximum. Furthermore, hygroscopic growth not only results in negative radiative forcing (RF) at the top of the atmosphere but also slightly weakens the absorption in the atmosphere (inducing a negative RF in the atmosphere). Compared to the more realistic model with BC as aggregates, the currently popular core‐shell model reasonably approximates the top of the atmosphere RF but underestimates the atmospheric RF due to hygroscopic growth by up to 40%. Furthermore, for the RF caused by internal mixing, the core‐shell model overestimates the RFs at the surface and in the atmosphere by ~10%

    Weapons of the Powerful: Authoritarian Elite Competition and Politicized Anticorruption in China

    Get PDF
    What motivates authoritarian regimes to crack down on corruption? We argue that just as partisan competition in democracies tends to politicize corruption, authoritarian leaders may exploit anticorruption campaigns to target rival supporters during internal power struggles for consolidating their power base. We apply this theoretical framework to provincial leadership turnover in China and test it using an anticorruption data set. We find that intraelite power competition, captured by the informal power configuration of government incumbents and their predecessors, can increase investigations of corrupt senior officials by up to 20%. The intensity of anticorruption propaganda exhibits a similar pattern. The findings indicate that informal politics can propel strong anticorruption drives in countries without democratically-accountable institutions, although the drives tend to be selective, arbitrary, and factionally biased.postprin

    Exosomes Derived From Bone Mesenchymal Stem Cells Ameliorate Early Inflammatory Responses Following Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide. Although treatment guidelines have been developed, no best treatment option or medicine for this condition exists. Recently, mesenchymal stem cells (MSCs)-derived exosomes have shown lots of promise for the treatment of brain disorders, with some results highlighting the neuroprotective effects through neurogenesis and angiogenesis after TBI. However, studies focusing on the role of exosomes in the early stages of neuroinflammation post-TBI are not sufficient. In this study, we investigated the role of bone mesenchymal stem cells (BMSCs)-exosomes in attenuating neuroinflammation at an early stage post-TBI and explored the potential regulatory neuroprotective mechanism. We administered 30 ÎŒg protein of BMSCs-exosomes or an equal volume of phosphate-buffered saline (PBS) via the retro-orbital route into C57BL/6 male mice 15 min after controlled cortical impact (CCI)-induced TBI. The results showed that the administration of BMSCs-exosomes reduced the lesion size and improved the neurobehavioral performance assessed by modified Neurological Severity Score (mNSS) and rotarod test. In addition, BMSCs-exosomes inhibited the expression of proapoptosis protein Bcl-2-associated X protein (BAX) and proinflammation cytokines, tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ÎČ, while enhancing the expression of the anti-apoptosis protein B-cell lymphoma 2 (BCL-2). Furthermore, BMSCs-exosomes modulated microglia/macrophage polarization by downregulating the expression of inducible nitric oxide synthase (INOS) and upregulating the expression of clusters of differentiation 206 (CD206) and arginase-1 (Arg1). In summary, our result shows that BMSCs-exosomes serve a neuroprotective function by inhibiting early neuroinflammation in TBI mice through modulating the polarization of microglia/macrophages. Further research into this may serve as a potential therapeutic strategy for the future treatment of TBI

    Officials' Promotion Likelihood and Regional Variation of Corruption in China

    No full text

    The effects of dual-channel coupling on the transition from amplitude death to oscillation death

    No full text
    Oscillation quenching including amplitude death (AD) and oscillation death (OD) in addition to the transition processes between them have been hot topics in aspect of chaos control, physical and biological applications. The effects of dual-channel coupling on the AD and OD dynamics regimes, and their transition processes in coupled nonidentical oscillators are explored numerically and theoretically. Our results indicate that an additional repulsive coupling tends to shrink the AD domain while it enlarges the OD domain, however, an additional attractive coupling acts inversely. As a result, the transitions from AD to OD are replaced by transitions from oscillation state (OS) to AD or from OS to OD in the dual-channel coupled oscillators with different frequency mismatches. Our results are helpful to better understand the control of AD and OD and their transition processes

    Numerical study of the influence of rib orientation on heat transfer enhancement in two-pass ribbed rectangular channel

    No full text
    Strong secondary flow generated by ribbed channel and U-shaped bend is the key for forced convection performance and energy dissipation in U-shaped cooling passage. This investigation studies the coupling of nine different rib orientation and the 180-degree bend on overall friction loss and forced convection in the U-shaped passage by ANSYS CFX commercial CFD package when Re = 30000. The comprehensive evolution of secondary flow is visualized by vortex core method and colored by turbulence kinetic energy. The qualitative results show that the Nu ratio and overall pressure loss in the downstream passage (Passage 2) is highly affected by the upstream geometry. The N-type rib orientation in Passage 1 delivers more disturbance energy into Passage 2 where P-type rib orientation can reduce the momentum loss of the upstream secondary flows and pressure loss. Based on the understanding of interaction of secondary flow near the bend, modified bend geometry is proposed with 9% thermal performance gain over the existent optimized rib orientation. This investigation suggests vortex core method is a promising visualization tool for the flow control and optimization in U-shaped cooling channel with angled ribs

    Structural characterization and hypolipidemic activities of purified stigma maydis polysaccharides

    No full text
    This study aimed to investigate structural features and antihyperlipidemic effects of the stigma maydis polysaccharide, termed SMP‐1. This polysaccharide was composed of D‐mannose, L‐rhamnose, D‐glucose, D‐galactose, L‐arabinose, D‐xylose, and D‐galacturonic acid, with a molar ratio of 1.00:0.21:1.41:1.44:0.70:0.44:0.56. The SMP‐1 was mainly bonded by (1 → 6) and (1 → 3) linkages, with various monosaccharides being evenly distributed in the main and side chains. Moreover, SMP‐1 had neither triple‐helical structure nor molecular aggregation. Importantly, the SMP‐1 could effectively bind the bile acids in vitro and significantly lower the total cholesterol, triglyceride, low‐density lipoprotein cholesterol levels, and moderately increase the high‐density lipoprotein cholesterol level in poloxamer 407‐induced hyperlipidemic mice. Moreover, pretreatment with SMP‐1 (≄300 mg/kg) could remarkably reduce fat accumulation and restore hepatocyte morphology in the liver of hyperlipidemic mice. Altogether, these findings indicated that SMP‐1 could be developed as a safe and effective food supplement for preventing and treating hyperlipidemic disorders

    Structural characterization and hypolipidemic activities of purified stigma maydis polysaccharides

    No full text
    This study aimed to investigate structural features and antihyperlipidemic effects of the stigma maydis polysaccharide, termed SMP‐1. This polysaccharide was composed of D‐mannose, L‐rhamnose, D‐glucose, D‐galactose, L‐arabinose, D‐xylose, and D‐galacturonic acid, with a molar ratio of 1.00:0.21:1.41:1.44:0.70:0.44:0.56. The SMP‐1 was mainly bonded by (1 → 6) and (1 → 3) linkages, with various monosaccharides being evenly distributed in the main and side chains. Moreover, SMP‐1 had neither triple‐helical structure nor molecular aggregation. Importantly, the SMP‐1 could effectively bind the bile acids in vitro and significantly lower the total cholesterol, triglyceride, low‐density lipoprotein cholesterol levels, and moderately increase the high‐density lipoprotein cholesterol level in poloxamer 407‐induced hyperlipidemic mice. Moreover, pretreatment with SMP‐1 (≄300 mg/kg) could remarkably reduce fat accumulation and restore hepatocyte morphology in the liver of hyperlipidemic mice. Altogether, these findings indicated that SMP‐1 could be developed as a safe and effective food supplement for preventing and treating hyperlipidemic disorders
    • 

    corecore