68 research outputs found
Electric Field Effect in Multilayer Cr2Ge2Te6: a Ferromagnetic Two-Dimensional Material
The emergence of two-dimensional (2D) materials has attracted a great deal of
attention due to their fascinating physical properties and potential
applications for future nanoelectronic devices. Since the first isolation of
graphene, a Dirac material, a large family of new functional 2D materials have
been discovered and characterized, including insulating 2D boron nitride,
semiconducting 2D transition metal dichalcogenides and black phosphorus, and
superconducting 2D bismuth strontium calcium copper oxide, molybdenum
disulphide and niobium selenide, etc. Here, we report the identification of
ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few
nanometers, which provides a very important piece to the van der Waals
structures consisting of various 2D materials. We further demonstrate the giant
modulation of the channel resistance of 2D CGT devices via electric field
effect. Our results illustrate the gate voltage tunability of 2D CGT and the
potential of CGT, a ferromagnetic 2D material, as a new functional quantum
material for applications in future nanoelectronics and spintronics.Comment: To appear in 2D Material
Partial purification of alpha-amylase from culture supernatant of Bacillus subtilis in aqueous two-phase systems
The original publication can be found at www.springerlink.comA study was made of the partition and purification of -amylase from a culture supernatant of Bacillus subtilis in the polyethylene glycol (PEG)—citrate aqueous two-phase system (ATPS). Factors that influenced the partition of the protein in this system, including the molecular weight of the PEG, the tie line length of ATPS, the pH value and the sodium chloride concentration, were investigated. Purification of -amylase was attained with a purification factor (PF) of 1.8 and 90% yield at pH 6.0 in a PEG1000-citrate ATPS with short tie line length. By utilizing the salt-out effect of neutral salt, the purification of -amylase was further improved to 2.0 of PF and 80% yield in a PEG3350-citrate ATPS with 4% sodium chloride.Wenbo Zhi, Jiangnan Song, Jingxiu Bi and Fan Ouyan
One-pot melamine derived nitrogen doped magnetic carbon nanoadsorbents with enhanced chromium removal
Novel nitrogen doped magnetic carbons (NMC), in-situ synthesized through facile pyrolysis-carbonization processes using Fe(NO3)3 and melamine as precursors, were demonstrated as excellent nanoadsorbents to remove Cr(VI) effectively. The achieved removal capacity in both neutral and acidic solution was 29.4 and 2001.4 mg g−1 respectively, much higher than the reported adsorbents so far. The unprecedented high adsorption performance can be attributed to the incorporation of the nitrogen dopant, which increased the negative charge density on the surface of adsorbent and thereby enhanced the interaction between the adsorbents and Cr(VI) ions. The density functional theory (DFT) calculation demonstrated that the nitrogen dopants can decrease the adsorption energy between the Cr(VI) ions and NMC (−3.456 kJ mol−1), lower than the undoped sample (−3.344 kJ mol−1), which boosted the adsorption behavior. Chemical rather than physical adsorption was followed for these magnetic nanoadsorbents as revealed from the pseudo-second-order kinetic study. Furthermore, the NMC showed high stability with recycling tests for the Cr(VI) removal
Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal
Newly designed fluorine-doped magnetic carbon (F-MC) was synthesized in situ though a facile one-step pyrolysis-carbonization method. Poly(vinylidene fluoride) (PVDF) served as the precursor for both carbon and fluorine. 2.5% F content with core-shell structure was obtained over F-MC, which was used as a adsorbent for the Cr(VI) removal. To our best knowledge, this is the first time to report that the fluorine doped material was applied for the Cr(VI) removal, demonstrating very high removal capacity (1423.4 mg g−1), higher than most reported adsorbents. The unexpected performance of F-MC can be attributed to the configuration of F dopants on the surface. The observed pseudo-second-order kinetic study indicated the dominance of chemical adsorption for this process. High stability of F-MC after 5 recycling test for the Cr(VI) removal was also observed, indicating that F-MC could be used as an excellent adsorbent for the toxic heavy metal removal from the wastewater
Two-Dimensional Optical Metasurfaces: From Plasmons to Dielectrics
Metasurfaces, kinds of planar ultrathin metamaterials, are able to modify the polarization, phase, and amplitude of physical fields of optical light by designed periodic subwavelength structures, attracting great interest in recent years. Based on the different type of the material, optical metasurfaces can be separated in two categories by the materials: one is metal and the other is dielectric. Metal metasurfaces rely on the surface plasma oscillations of subwavelength metal particles. Nevertheless, the loss caused by the metal structures has been a trouble, especially for devices working in transmit modes. The dielectric metasurfaces are based on the Faraday-Tyndall scattering of high-index dielectric light scattering particles. By reasonably designing the relevant parameters of the unit structure such as the size, direction, and shape, different functions of metasurfaces can realize and bring a wide range of applications. This article focuses on the metasurface concepts such as anomalous reflections and refractions and the working principle of different types of metasurfaces. Here, we briefly review the progress in developing optical over past few years and look into the near future
Service Differentiation for Cloud and Virtualized Systems
This project is a collaborative effort exploring various aspects related to offering different levels of service in cloud systems and/or the virtualized environments on which they are commonly base
- …