76 research outputs found

    Imaging of Formaldehyde in Live Cells and Daphnia magna via Aza-Cope Reaction Utilizing Fluorescence Probe With Large Stokes Shifts

    Get PDF
    Formaldehyde (FA), a highly reactive carbonyl species, plays significant role in physiological and pathological functions. However, elevated FA will lead to cognitive impairments, memory loss and various neurodegenerative diseases due to its potent DNA and protein cross-linking mechanisms. In this work, a fluorescence probe, BD-CHO, based on benz-2-oxa-1, 3- diazole (BD) skeleton, was designed and synthesized for detection of FA via Aza-Cope reaction with high selectivity and large Stokes shifts (about 118 nm). BD-CHO was successfully applied to monitor the changes FA level in living cells, and kidney tissues of mice. Importantly it was the first time that BD-CHO was used for visualizing exogenous FA changes in Daphnia magna through fluorescence microscopy, demonstrating its potential application for studies of biological processes associated with FA

    Hospitalization of patients with nutritional anemia in the United States in 2020

    Get PDF
    BackgroundNutritional anemia is highly prevalent and has triggered a globally recognized public health concern worldwide.ObjectiveTo better understand the prevalence of anemia and the state of nutritional health in developed countries to inform global nutritional health and better manage the disease.MethodWe employed the Healthcare Cost and Utilization Project (HCUP)-2020 National Inpatient Health Care Data (NIS), administered by The Agency for Healthcare Research and Quality. Nutritional anemia was diagnosed according to the International Classification of Diseases, 10th Revision (ICD-10). Matching analysis and multivariate regression were used to adjust for patient and hospital characteristics. Controls were obtained by stratifying and matching for age and sex.ResultsThe 2020 HCUP-NIS database encompassed a survey over 6.4 million hospitalized patients, among which 1,745,350 patients diagnosed with anemia, representing approximately 26.97% of the hospitalized population, over 310,000 were diagnosed with nutritional anemia, and 13,150 patients were hospitalized for nutritional anemia as primary diagnosis. Hospitalization rate for nutritional anemia exhibited an increased age-dependent increase nationwide, especially among females, who displayed 1.87 times higher than males. Notably, in comparison to the control group, individuals of the Black race exhibit a higher prevalence of nutritional anemia (case group: 21.7%, control group: 13.0%, p < 0.001). In addition, hospitalization rates were higher among low-income populations, with lower rates of private insurance (case group: 18.7%, control group: 23.5%, p < 0.001) and higher rates of Medicaid insurance (case group: 15.4%, control group: 13.9%, p < 0.001). In areas characterized by larger urban centers and advanced economic conditions within the urban–rural distribution, there was an observed increase in the frequency of patient hospitalizations. Iron deficiency anemia emerged as the predominant subtype of nutritional anemia, accounting for 12,214 (92.88%). Secondary diagnosis among patients hospitalized for nutritional anemia revealed that a significant number faced concurrent major conditions like hypertension and renal failure.ConclusionIn economically prosperous areas, greater attention should be given to the health of low-income individuals and the older adult. Our findings hold valuable insights for shaping targeted public health policies to effectively address the prevalence and consequences of nutritional anemia based on a overall population health

    Lighting-Up Tumor for Assisting Resection via Spraying NIR Fluorescent Probe of γ-Glutamyltranspeptidas

    Get PDF
    For the precision resection, development of near-infrared (NIR) fluorescent probe based on specificity identification tumor-associated enzyme for lighting-up the tumor area, is urgent in the field of diagnosis and treatment. Overexpression of γ-glutamyltranspeptidase, one of the cell-membrane enzymes, known as a biomarker is concerned with the growth and progression of ovarian, liver, colon and breast cancer compared to normal tissue. In this work, a remarkable enzyme-activated NIR fluorescent probe NIR-SN-GGT was proposed and synthesized including two moieties: a NIR dicyanoisophorone core as signal reporter unit; γ-glutamyl group as the specificity identification site. In the presence of γ-GGT, probe NIR-SN-GGT was transformed into NIR-SN-NH2, the recovery of Intramolecular Charge Transfer (ICT), liberating the NIR fluorescence signal, which was firstly employed to distinguish tumor tissue and normal tissues via simple “spraying” manner, greatly promoting the possibility of precise excision. Furthermore, combined with magnetic resonance imaging by T2 weight mode, tumor transplanted BABL/c mice could be also lit up for first time by NIR fluorescence probe having a large stokes, which demonstrated that probe NIR-SN-GGT would be a useful tool for assisting surgeon to diagnose and remove tumor in clinical practice

    Giant polarization in super-tetragonal ferroelectric thin films through interphase strain

    Get PDF
    Strain engineering has emerged as a powerful tool to enhance the performance of known functional materials. Here we demonstrate a general and practical method to obtain super-tetragonality and giant polarization using interphase strain. We use this method to create an out-of-plane–to–in-plane lattice parameter ratio of 1.238 in epitaxial composite thin films of tetragonal lead titanate (PbTiO3), compared to 1.065 in bulk. These thin films with super-tetragonal structure possess a giant remanent polarization, 236.3 microcoulombs per square centimeter, which is almost twice the value of known ferroelectrics. The super-tetragonal phase is stable up to 725°C, compared to the bulk transition temperature of 490°C. The interphase-strain approach could enhance the physical properties of other functional materials.PostprintPeer reviewe

    Organic functional dyes

    No full text

    A flotation combined extraction process for improving the whiteness of phosphogypsum

    No full text
    Every year, the production of industrial phosphoric acid generates more than 100 Tg of phosphogypsum (PG), leading to significant environmental damage and the occupation of a vast amount of land space. The urgent need to explore applications for PG has become increasingly apparent. However, impurities such as organic substances, slime, phosphorite, and SiO2 reduce the whiteness of PG, making it difficult to utilize for high-value applications. To address this issue, this study employed a two-stage flotation process to remove the majority of impurities, including SiO2, organic substances, and fine slime adhered to the surface of PG particles. The raw PG sample was first sieved to remove some SiO2 particles. After flotation, sulfuric acid and tributyl phosphate were introduced to decompose the PG particles and remove the impurities wrapped inside. Following this flotation combined extraction process, the whiteness of the PG sample improved from 54.1% to 92.9%, meeting the requirements for building walls and filters
    corecore