5,846 research outputs found

    Topological Imbert-Fedorov shift in Weyl semimetals

    Full text link
    The Goos-H\"anchen (GH) shift and the Imbert-Fedorov (IF) shift are optical phenomena which describe the longitudinal and transverse lateral shifts at the reflection interface, respectively. Here, we report the GH and IF shifts in Weyl semimetals (WSMs) - a promising material harboring low energy Weyl fermions, a massless fermionic cousin of photons. Our results show that GH shift in WSMs is valley-independent which is analogous to that discovered in a 2D relativistic material - graphene. However, the IF shift has never been explored in non-optical systems, and here we show that it is valley-dependent. Furthermore, we find that the IF shift actually originates from the topological effect of the system. Experimentally, the topological IF shift can be utilized to characterize the Weyl semimetals, design valleytronic devices of high efficiency, and measure the Berry curvature

    The valley filter efficiency of monolayer graphene and bilayer graphene line defect model

    Full text link
    In addition to electron charge and spin, novel materials host another degree of freedom, the valley. For a junction composed of valley filter sandwiched by two normal terminals, we focus on the valley efficiency under disorder with two valley filter models based on monolayer and bilayer graphene. Applying the transfer matrix method, valley resolved transmission coefficients are obtained. We find that: i) under weak disorder, when the line defect length is over about 15nm15\rm nm, it functions as a perfect channel (quantized conductance) and valley filter (totally polarized); ii) in the diffusive regime, combination effects of backscattering and bulk states assisted intervalley transmission enhance the conductance and suppress the valley polarization; iii) for very long line defect, though the conductance is small, polarization is indifferent to length. Under perpendicular magnetics field, the characters of charge and valley transport are only slightly affected. Finally we discuss the efficiency of transport valley polarized current in a hybrid system.Comment: 6 figure

    Transport discovery of emerging robust helical surface states in Z2=0Z_2=0 systems

    Full text link
    We study the possibility of realizing robust helical surface states in Z2=0Z_2=0 systems. We find that the combination of anisotropy and finite-size confinement leads to the emergence of robust helical edge states in both 2D and 3D Z2=0Z_2=0 systems. By investigating an anisotropic Bernevig-Hughes-Zhang model in a finite sample, we demonstrate that the transport manifestation of the surface states is robust against non-magnetic disorder, resembling that of a Z2=1Z_2 = 1 phase. Notably, the effective energy gap for the robust helical states can be efficiently engineered, allowing for potential applications as valley filters and valley valves. The realization of emerging robust helical surface states in realistic material is also discussed.Comment: 5 pages, 4 figures; submitted to Phys. Rev. Lett. on Nov. 25. 201

    One-dimensional quantum channel in a graphene line defect

    Full text link
    Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra. In particular, a gapless state is observed for a configuration which hold a mirror symmetry with respect to the line defect. We find that this gapless state originates from the line defect and is independent of the width of the graphene ribbon, the location of the line defect, and the potentials in the edges of the ribbon. In particular, the gapless state can be controlled by the gate voltage embedded below the line defect. Finally, this result is supported with conductance calculations. This study shows how a quantum channel could be constructed using a line defect, and how the quantum channel can be controlled by tuning the gate voltage embedded below the line defect.Comment: 8 pages, 10 figure
    • …
    corecore