11,105 research outputs found
Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material
Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit
remarkable electronic and optical properties. The 2D features, sizable
bandgaps, and recent advances in the synthesis, characterization, and device
fabrication of the representative MoS, WS, WSe, and MoSe TMDs
make TMDs very attractive in nanoelectronics and optoelectronics. Similar to
graphite and graphene, the atoms within each layer in 2D TMDs are joined
together by covalent bonds, while van der Waals interactions keep the layers
together. This makes the physical and chemical properties of 2D TMDs layer
dependent. In this review, we discuss the basic lattice vibrations of
monolayer, multilayer, and bulk TMDs, including high-frequency optical phonons,
interlayer shear and layer breathing phonons, the Raman selection rule,
layer-number evolution of phonons, multiple phonon replica, and phonons at the
edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in
investigating the properties of TMDs are discussed, such as interlayer
coupling, spin--orbit splitting, and external perturbations. The interlayer
vibrational modes are used in rapid and substrate-free characterization of the
layer number of multilayer TMDs and in probing interface coupling in TMD
heterostructures. The success of Raman spectroscopy in investigating TMD
nanosheets paves the way for experiments on other 2D crystals and related van
der Waals heterostructures.Comment: 30 pages, 23 figure
Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy
Two-dimensional Molybdenum Disulfide (MoS2) has shown promising prospects for
the next generation electronics and optoelectronics devices. The monolayer MoS2
can be patterned into quasi-one-dimensional anisotropic MoS2 nanoribbons
(MNRs), in which theoretical calculations have predicted novel properties.
However, little work has been carried out in the experimental exploration of
MNRs with a width of less than 20 nm where the geometrical confinement can lead
to interesting phenomenon. Here, we prepared MNRs with width between 5 nm to 15
nm by direct helium ion beam milling. High optical anisotropy of these MNRs is
revealed by the systematic study of optical contrast and Raman spectroscopy.
The Raman modes in MNRs show strong polarization dependence. Besides that the
E' and A'1 peaks are broadened by the phonon-confinement effect, the modes
corresponding to singularities of vibrational density of states are activated
by edges. The peculiar polarization behavior of Raman modes can be explained by
the anisotropy of light absorption in MNRs, which is evidenced by the polarized
optical contrast. The study opens the possibility to explore
quasione-dimensional materials with high optical anisotropy from isotropic 2D
family of transition metal dichalcogenides
Cost-Efficient Data Backup for Data Center Networks against {\epsilon}-Time Early Warning Disaster
Data backup in data center networks (DCNs) is critical to minimize the data
loss under disaster. This paper considers the cost-efficient data backup for
DCNs against a disaster with early warning time. Given
geo-distributed DCNs and such a -time early warning disaster, we
investigate the issue of how to back up the data in DCN nodes under risk to
other safe DCN nodes within the early warning time constraint,
which is significant because it is an emergency data protection scheme against
a predictable disaster and also help DCN operators to build a complete backup
scheme, i.e., regular backup and emergency backup. Specifically, an Integer
Linear Program (ILP)-based theoretical framework is proposed to identify the
optimal selections of backup DCN nodes and data transmission paths, such that
the overall data backup cost is minimized. Extensive numerical results are also
provided to illustrate the proposed framework for DCN data backup
The effect of bandwidth in scale-free network traffic
We model information traffic on scale-free networks by introducing the
bandwidth as the delivering ability of links. We focus on the effects of
bandwidth on the packet delivering ability of the traffic system to better
understand traffic dynamic in real network systems. Such ability can be
measured by a phase transition from free flow to congestion. Two cases of node
capacity C are considered, i.e., C=constant and C is proportional to the node's
degree. We figured out the decrease of the handling ability of the system
together with the movement of the optimal local routing coefficient ,
induced by the restriction of bandwidth. Interestingly, for low bandwidth, the
same optimal value of emerges for both cases of node capacity. We
investigate the number of packets of each node in the free flow state and
provide analytical explanations for the optimal value of . Average
packets traveling time is also studied. Our study may be useful for evaluating
the overall efficiency of networked traffic systems, and for allevating traffic
jam in such systems.Comment: 6 pages, 4 figure
Chiral symmetry analysis and rigid rotational invariance for the lattice dynamics of single-wall carbon nanotubes
In this paper, we provide a detailed expression of the vibrational potential
for the lattice dynamics of the single-wall carbon nanotubes (SWCNT) satisfying
the requirements of the exact rigid translational as well as rotational
symmetries, which is a nontrivial generalization of the valence force model for
the planar graphene sheet. With the model, the low frequency behavior of the
dispersion of the acoustic modes as well as the flexure mode can be precisely
calculated. Based upon a comprehensive chiral symmetry analysis, the calculated
mode frequencies (including all the Raman and infrared active modes),
velocities of acoustic modes and the polarization vectors are systematically
fitted in terms of the chiral angle and radius, where the restrictions of
various symmetry operations of the SWCNT are fulfilled
Population Redistribution among Multiple Electronic States of Molecular Nitrogen Ions in Strong Laser Fields
We carry out a combined theoretical and experimental investigation on the
population distributions in the ground and excited states of tunnel ionized N2
molecules at various driver wavelengths in the near- and mid-infrared range.
Our results reveal that efficient couplings (i.e., population exchanges)
between the ground state and the excited states occur in strong laser fields.
The couplings result in the population inversion between the ground and the
excited states at the wavelengths near 800 nm, which is verified by our
experiment by observing the amplification of a seed at ~391 nm. The result
provides insight into the mechanism of free-space nitrogen ion lasers generated
in remote air with strong femtosecond laser pulses.Comment: 18 pages, 4 figure
- …
