3 research outputs found

    mTOR signaling in proteostasis and its relevance to autism spectrum disorders

    No full text
    Proteins are extremely labile cellular components, especially at physiological temperatures. The appropriate regulation of protein levels, or proteostasis, is essential for all cells. In the case of highly polarized cells like neurons, proteostasis is also crucial at synapses, where quick confined changes in protein composition occur to support synaptic activity and plasticity. The accurate regulation of those cellular processes controlling protein synthesis and degradation is necessary for proteostasis, and its deregulation has deleterious consequences in brain function. Alterations in those cellular mechanisms supporting synaptic protein homeostasis have been pinpointed in autism spectrum disorders such as tuberous sclerosis, neurofibromatosis 1, PTEN-related disorders, fragile X syndrome, MECP2 disorders and Angelman syndrome. Proteostasis alterations in these disorders share the alterations in mechanistic/mammalian target of rapamycin (mTOR) signaling pathway, an intracellular pathway with key synaptic roles. The aim of the present review is to describe the recent literature on the major cellular mechanisms involved in proteostasis regulation in the synaptic context, and its association with mTOR signaling deregulations in various autism spectrum disorders. Altogether, the cellular and molecular mechanisms in synaptic proteostasis could be the foundation for novel shared therapeutic strategies that would take advantage of targeting common disorder mechanisms.This review was supported by grant BFU2015-68568-P (MINECO/FEDER, EU) to AO

    Assessing written work by determining competence to achieve the module-specific learning outcomes.

    No full text
    This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization

    Lasers and Coherent Light Sources

    No full text
    corecore