66,560 research outputs found

    NMR Probing Spin Excitations in the Ring-Like Structure of a Two-Subband System

    Full text link
    Resistively detected nuclear magnetic resonance (NMR) is observed inside the ring-like structure, with a quantized Hall conductance of 6e^2/h, in the phase diagram of a two subband electron system. The NMR signal persists up to 400 mK and is absent in other states with the same quantized Hall conductance. The nuclear spin-lattice relaxation time, T1, is found to decrease rapidly towards the ring center. These observations are consistent with the assertion of the ring-like region being a ferromagnetic state that is accompanied by collective spin excitations.Comment: 4 pages, 4 figure

    Analyticity of the Susceptibility Function for Unimodal Markovian Maps of the Interval

    Full text link
    In a previous note [Ru] the susceptibility function was analyzed for some examples of maps of the interval. The purpose of the present note is to give a concise treatment of the general unimodal Markovian case (assuming ff real analytic). We hope that it will similarly be possible to analyze maps satisfying the Collet-Eckmann condition. Eventually, as explained in [Ru], application of a theorem of Whitney [Wh] should prove differentiability of the map fρff\mapsto\rho_f restricted to a suitable set.Comment: 8 page

    Comment on "Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at room temperature"

    Full text link
    We comment on the conclusion by Ma et al. [Appl. Phys. Lett. {\bf 94}, 241112 (2009)] that the Elliott-Yafet mechanism is more important than the D'yakonov-Perel' mechanism at high carrier density in intrinsic bulk CdTe at room temperature. We point out that the spin relaxation is solely from the D'yakonov-Perel' mechanism. The observed peak in the density dependence of spin relaxation time is exactly what we predicted in a recent work [Phys. Rev. B {\bf 79}, 125206 (2009)].Comment: 2 page

    Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling

    Full text link
    We investigate the effects of the intense terahertz laser field and the spin-orbit coupling on single electron spin in a quantum dot. The laser field and the spin-orbit coupling can strongly affect the electron density of states and can excite a magnetic moment. The direction of the magnetic moment depends on the symmetries of the system, and its amplitude can be tuned by the strength and frequency of the laser field as well as the spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Fabrication and Characterization of Electrostatic Quantum Dots in a Si/SiGe 2D Electron Gas, Including an Integrated Read-out Channel

    Full text link
    A new fabrication technique is used to produce quantum dots with read-out channels in silicon/silicon-germanium two-dimensional electron gases. The technique utilizes Schottky gates, placed on the sides of a shallow etched quantum dot, to control the electronic transport process. An adjacent quantum point contact gate is integrated to the side gates to define a read-out channel and thus allow for noninvasive detection of the electronic occupation of the quantum dot. Reproducible and stable Coulomb oscillations and the corresponding jumps in the read-out channel resistance are observed at low temperatures. The fabricated dot combined with the read-out channel represent a step towards the spin-based quantum bit in Si/SiGe heterostructures.Comment: 3 pages, 4 fig
    corecore