30,744 research outputs found
Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes
Given positive integers and , let denote the maximum size
of a binary code of length and minimum distance . The well-known
Gilbert-Varshamov bound asserts that , where
is the volume of a Hamming sphere of
radius . We show that, in fact, there exists a positive constant such
that whenever . The result follows by recasting the Gilbert- Varshamov bound into a
graph-theoretic framework and using the fact that the corresponding graph is
locally sparse. Generalizations and extensions of this result are briefly
discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on
Information Theory, submitted August 12, 2003, revised March 28, 200
- β¦