72,291 research outputs found

    Diffusion induced decoherence of stored optical vortices

    Full text link
    We study the coherence properties of optical vortices stored in atomic ensembles. In the presence of thermal diffusion, the topological nature of stored optical vortices is found not to guarantee slow decoherence. Instead the stored vortex state has decoherence surprisingly larger than the stored Gaussian mode. Generally, the less phase gradient, the more robust for stored coherence against diffusion. Furthermore, calculation of coherence factor shows that the center of stored vortex becomes completely incoherent once diffusion begins and, when reading laser is applied, the optical intensity at the center of the vortex becomes nonzero. Its implication for quantum information is discussed. Comparison of classical diffusion and quantum diffusion is also presented.Comment: 5 pages, 2 figure

    Role of internal gases and creep of Ag in controlling the critical current density of Ag-sheathed Bi2Sr2CaCu2Ox wires

    Full text link
    High engineering critical current density JE of >500 A/mm2 at 20 T and 4.2 K can be regularly achieved in Ag-sheathed multifilamentary Bi2Sr2CaCu2Ox (Bi-2212) round wire when the sample length is several centimeters. However, JE(20 T) in Bi-2212 wires of several meters length, as well as longer pieces wound in coils, rarely exceeds 200 A/mm2. Moreover, long-length wires often exhibit signs of Bi-2212 leakage after melt processing that are rarely found in short, open-end samples. We studied the length dependence of JE of state-of-the-art powder-in-tube (PIT) Bi-2212 wires and gases released by them during melt processing using mass spectroscopy, confirming that JE degradation with length is due to wire swelling produced by high internal gas pressures at elevated temperatures [1,2]. We further modeled the gas transport in Bi-2212 wires and examined the wire expansion at critical stages of the melt processing of as-drawn PIT wires and the wires that received a degassing treatment or a cold-densification treatment before melt processing. These investigations showed that internal gas pressure in long-length wires drives creep of the Ag sheath during the heat treatment, causing wire to expand, lowering the density of Bi-2212 filaments, and therefore degrading the wire JE; the creep rupture of silver sheath naturally leads to the leakage of Bi-2212 liquid. Our work shows that proper control of such creep is the key to preventing Bi-2212 leakage and achieving high JE in long-length Bi-2212 conductors and coils

    Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling

    Full text link
    We report the experimental observation of sub-Poissonian shot noise in single magnetic tunnel junctions, indicating the importance of tunneling via impurity levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in conductance, the Fano factor (normalized shot noise) depends on the magnetic configuration being enhanced for antiparallel alignment of the ferromagnetic electrodes. We propose a model of sequential tunneling through nonmagnetic and paramagnetic impurity levels inside the tunnel barrier to qualitatively explain the observations.Comment: 5 pages, 5 figure

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure

    Paired state in an integrable spin-1 boson model

    Full text link
    An exactly solvable model describing the low density limit of the spin-1 bosons in a one-dimensional optical lattice is proposed. The exact Bethe ansatz solution shows that the low energy physics of this system is described by a quantum liquid of spin singlet bound pairs. Motivated by the exact results, a mean-field approach to the corresponding three-dimensional system is carried out. Condensation of singlet pairs and coexistence with ordinary Bose-Einstein condensation are predicted.Comment: 6 pages, 1 figure, Revised versio
    corecore