81,080 research outputs found
Diffusion induced decoherence of stored optical vortices
We study the coherence properties of optical vortices stored in atomic
ensembles. In the presence of thermal diffusion, the topological nature of
stored optical vortices is found not to guarantee slow decoherence. Instead the
stored vortex state has decoherence surprisingly larger than the stored
Gaussian mode. Generally, the less phase gradient, the more robust for stored
coherence against diffusion. Furthermore, calculation of coherence factor shows
that the center of stored vortex becomes completely incoherent once diffusion
begins and, when reading laser is applied, the optical intensity at the center
of the vortex becomes nonzero. Its implication for quantum information is
discussed. Comparison of classical diffusion and quantum diffusion is also
presented.Comment: 5 pages, 2 figure
Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling
We report the experimental observation of sub-Poissonian shot noise in single
magnetic tunnel junctions, indicating the importance of tunneling via impurity
levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in
conductance, the Fano factor (normalized shot noise) depends on the magnetic
configuration being enhanced for antiparallel alignment of the ferromagnetic
electrodes. We propose a model of sequential tunneling through nonmagnetic and
paramagnetic impurity levels inside the tunnel barrier to qualitatively explain
the observations.Comment: 5 pages, 5 figure
Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration
Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente
- …