2,177 research outputs found
Transfer Learning for Content-Based Recommender Systems using Tree Matching
In this paper we present a new approach to content-based transfer learning
for solving the data sparsity problem in cases when the users' preferences in
the target domain are either scarce or unavailable, but the necessary
information on the preferences exists in another domain. We show that training
a system to use such information across domains can produce better performance.
Specifically, we represent users' behavior patterns based on topological graph
structures. Each behavior pattern represents the behavior of a set of users,
when the users' behavior is defined as the items they rated and the items'
rating values. In the next step we find a correlation between behavior patterns
in the source domain and behavior patterns in the target domain. This mapping
is considered a bridge between the two domains. Based on the correlation and
content-attributes of the items, we train a machine learning model to predict
users' ratings in the target domain. When we compare our approach to the
popularity approach and KNN-cross-domain on a real world dataset, the results
show that on an average of 83 of the cases our approach outperforms both
methods
Efficient room temperature cw Yb:glass laser pumped by a 946nm Nd:YAG laser
By pumping with a cw diode-pumped Nd:YAG laser operating at 946nm laser operation of a new Yb-doped phosphate glass with 440mW cw output power and a slope efficiency of 48% with respect to the absorbed pump power was achieved at room temperature
Removal of Arsenic (III) from groundwater applying a reusable Mg-Fe-Cl layered double hydroxide
BACKGROUND:
Layered double hydroxide compounds (LDHs) have been applied for the removal of oxyanions including arsenate (As(V)). However, the aim of this present research is to develop a LDH to treat arsenite (As(III)). Both batch and column sorption studies were conducted to assess the effect of LDH dosage, contact time, solution pH and initial As(III) concentrations on the As(III) removal performance. The potential re-use of this sorbent was also investigated.<p></p>
RESULTS: For 2 g L−1 of Mg-Fe-Cl LDH, As(III) in test solution can be reduced from 400 µg L−1 to <10 µg L−1 after a contact time of 2 h. High As(III) concentration in Bangladesh groundwater can be reduced to meet the national drinking water standards (<50 µg L−1). The maximum adsorption capacity of As(III) by Mg-Fe-Cl LDH is 14.6 mg g−1-LDH. Further, reusability of this sorbent was at least 20 cycles of regeneration with effective As(III) removal between 93.0 and 98.5%. Moreover, As(III) removal was unaffected by the solution pH but affected by the co-existing competing anions and concentration of As(III). Finally, the main mechanism of As(III) removal by Mg-Fe-Cl LDH was suggested to be chemical sorption together with anion and ligand exchange with interlayer Cl− and OH− ions.<p></p>
CONCLUSION: High efficiency of sorption of As(III) by the developed Mg-Fe-Cl LDH was demonstrated in this study which is generally not the case for most other sorbent materials. Pilot-scale trials are needed to explore the suitability of full application of the developed Mg-Fe-Cl LDH for the removal of As(III).<p></p>
Treatment of DomesticWastewaterwith Simultaneous Electricity Generation in Microbial Fuel Cell under Continuous Operation
In order to apply microbial fuel cell (MFC) process more practically in wastewater treatment, both power generation and removal of chemical oxygen demand (COD) were examined in an air-cathode MFC fed with domestic wastewater under continuous operation.
At a hydraulic retention time (HRT) of 2.0 h, the air-cathode MFC was able to generate electricity from domestic wastewater with a maximum power density of P = 103 2 mWm–2 (5772 mW m–3) and an average Coulomb efficiency (CE) of 18.4%; meanwhile,
to achieve an average COD removal up to 71 %. Increasing HRT from 2h to 10–30 h was found to be more effective for COD removal, however, instability in voltage output was also observed. An increased power generation of 1734mW m–2 (9648 mW m–3) was obtained with the aid of NaCl addition at a mass fraction of w = 2.4 %, because of an elevated conductivity of the solution with accord internal resistance of 227 0
Coexistence of ferro- and antiferromagnetic order in Mn-doped NiMnGa
Ni-Mn-Ga is interesting as a prototype of a magnetic shape-memory alloy
showing large magnetic field induced strains. We present here results for the
magnetic ordering of Mn-rich Ni-Mn-Ga alloys based on both experiments and
theory. Experimental trends for the composition dependence of the magnetization
are measured by a vibrating sample magnetometer (VSM) in magnetic fields of up
to several tesla and at low temperatures. The saturation magnetization has a
maximum near the stoichiometric composition and it decreases with increasing Mn
content. This unexpected behaviour is interpreted via first-principles
calculations within the density-functional theory. We show that extra Mn atoms
are antiferromagnetically aligned to the other moments, which explains the
dependence of the magnetization on composition. In addition, the effect of Mn
doping on the stabilization of the structural phases and on the magnetic
anisotropy energy is demonstrated.Comment: 4 pages, 3 figure
Revisiting the -Meson Production at the Hadronic Colliders
The production of heavy-flavored hadron at the hadronic colliders provides a
challenging opportunity to test the validity of pQCD predictions. There are two
mechanisms for the hadroproduction, i.e. the gluon-gluon fusion
mechanism via the subprocess and the
extrinsic heavy quark mechanism via the subprocesses and , both of which shall have sizable
contributions in proper kinematic region. Different from the
fixed-flavor-number scheme (FFNS) previously adopted in the literature, we
study the hadroproduction under the general-mass
variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with
the double counting problem from the above two mechanisms. Properties for the
hadroproduction are discussed. To be useful reference, a
comparative study of FFNS and GM-VFNS is presented. Both of which can provide
reasonable estimations for the hadroproduction. At the Tevatron,
the difference between these two schemes is small, however such difference is
obvious at the LHC. The forthcoming more precise data on LHC shall provide a
good chance to check which scheme is more appropriate to deal with the
-meson production and to further study the heavy quark components in
hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be
published in Eur.Phys.J.
Interacting Dipoles from Matrix Formulation of Noncommutative Gauge Theories
We study the IR behavior of noncommutative gauge theory in the matrix
formulation. We find that in this approach, the nature of the UV/IR mixing is
easily understood, which allows us to perform a reliable calculation of the
quantum effective action for the long wavelength modes of the noncommutative
gauge field. At one loop, we find that our description is weakly coupled only
in the supersymmetric theory. At two loops, we find non-trivial interaction
terms suggestive of dipole degrees of freedom. These dipoles exhibit a channel
duality reminiscent of string theory.Comment: LaTeX 11 pages, 4 figures; v.2 minor changes and some references
added; v.3 many more technical details added and significantly different
presentation, use REVTeX 4, to appear in PR
- …