48 research outputs found

    Finite-Time Chaos Control of a Complex Permanent Magnet Synchronous Motor System

    Get PDF
    This paper investigates the finite-time chaos control of a permanent magnet synchronous motor system with complex variables. Based on the finite-time stability theory, two control strategies are proposed to realize stabilization of the complex permanent magnet synchronous motor system in a finite time. Two numerical simulations have been conducted to demonstrate the validity and feasibility of the theoretical analysis

    Hopf Bifurcation Analysis for the van der Pol Equation with Discrete and Distributed Delays

    Get PDF
    We consider the van der Pol equation with discrete and distributed delays. Linear stability of this equation is investigated by analyzing the transcendental characteristic equation of its linearized equation. It is found that this equation undergoes a sequence of Hopf bifurcations by choosing the discrete time delay as a bifurcation parameter. In addition, the properties of Hopf bifurcation were analyzed in detail by applying the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate and verify the theoretical analysis

    Competing Weak Localization and Weak Antilocalization in Ultrathin Topological Insulators

    Get PDF
    We demonstrate evidence of a surface gap opening in topological insulator (TI) thin films of (Bi_(0.57)Sb_(0.43))_(2)Te_3 below six quintuple layers through transport and scanning tunneling spectroscopy measurements. By effective tuning the Fermi level via gate-voltage control, we unveil a striking competition between weak localization and weak antilocalization at low magnetic fields in nonmagnetic ultrathin films, possibly owing to the change of the net Berry phase. Furthermore, when the Fermi level is swept into the surface gap of ultrathin samples, the overall unitary behaviors are revealed at higher magnetic fields, which are in contrast to the pure WAL signals obtained in thicker films. Our findings show an exotic phenomenon characterizing the gapped TI surface states and point to the future realization of quantum spin Hall effect and dissipationless TI-based applications

    A clinical prediction model based on interpretable machine learning algorithms for prolonged hospital stay in acute ischemic stroke patients: a real-world study

    Get PDF
    ObjectiveAcute ischemic stroke (AIS) brings an increasingly heavier economic burden nowadays. Prolonged length of stay (LOS) is a vital factor in healthcare expenditures. The aim of this study was to predict prolonged LOS in AIS patients based on an interpretable machine learning algorithm.MethodsWe enrolled AIS patients in our hospital from August 2017 to July 2019, and divided them into the “prolonged LOS” group and the “no prolonged LOS” group. Prolonged LOS was defined as hospitalization for more than 7 days. The least absolute shrinkage and selection operator (LASSO) regression was applied to reduce the dimensionality of the data. We compared the predictive capacity of extended LOS in eight different machine learning algorithms. SHapley Additive exPlanations (SHAP) values were used to interpret the outcome, and the most optimal model was assessed by discrimination, calibration, and clinical utility.ResultsProlonged LOS developed in 149 (22.0%) of the 677 eligible patients. In eight machine learning algorithms, prolonged LOS was best predicted by the Gaussian naive Bayes (GNB) model, which had a striking area under the curve (AUC) of 0.878 ± 0.007 in the training set and 0.857 ± 0.039 in the validation set. The variables sorted by the gap values showed that the strongest predictors were pneumonia, dysphagia, thrombectomy, and stroke severity. High net benefits were observed at 0%–76% threshold probabilities, while good agreement was found between the observed and predicted probabilities.ConclusionsThe model using the GNB algorithm proved excellent for predicting prolonged LOS in AIS patients. This simple model of prolonged hospitalization could help adjust policies and better utilize resources

    Various Heteroclinic Solutions for the Coupled Schrödinger-Boussinesq Equation

    Get PDF
    Various closed-form heteroclinic breather solutions including classical heteroclinic, heteroclinic breather and Akhmediev breathers solutions for coupled Schrödinger-Boussinesq equation are obtained using two-soliton and homoclinic test methods, respectively. Moreover, various heteroclinic structures of waves are investigated

    Synchronization of a Novel Hyperchaotic Complex-Variable System Based on Finite-Time Stability Theory

    No full text
    In this paper, we investigate the finite-time synchronization problem of a novel hyperchaotic complex-variable system which generates 2-, 3- and 4-scroll attractors. Based on the finite-time stability theory, two control strategies are proposed to realize synchronization of the novel hyperchaotic complex-variable system in finite time. Finally, two numerical examples have been provided to illustrate the effectiveness of the theoretical analysis
    corecore