112,323 research outputs found

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Iterative multi-user detection for OFDM using biased mutation assisted genetic algorithms

    No full text
    Space Division Multiple Access (SDMA) aided Orthogonal Frequency Division Multiplexing (OFDM) systems assisted by efficient Multi-User Detection (MUD) techniques have recently attracted intensive research interests. As expected, Maximum Likelihood (ML) detection was found to attain the best performance, although this was achieved at the cost of a high computational complexity. Forward Error Correction (FEC) schemes such as Turbo Trellis Coded Modulation (TTCM) can be efficiently amalgamated with SDMA-OFDM systems for the sake of improving the achievable performance without bandwidth expansion. In this contribution, a MMSE-aided Iterative GA (IGA) MUD is proposed for employment in a TTCM-assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its optimum ML-aided counterpart at a significantly lower complexity, especially at high user loads. Moreover, when the proposed novel Biased Q-function Based Mutation (BQM) scheme is employed, the IGA-aided system’s performance can be further improved by achieving an Eb/N0 gain of about 6dB in comparison to the TTCM-aided MMSE-SDMA-OFDM benchmarker system both in low- and high-throughput modem scenarios, respectively, while still maintaining a modest complexity

    Genetically Enhanced TTCM Assisted MMSE Multi-user Detection for SDMA-OFDM

    No full text
    Space Division Multiple Access (SDMA) aided Orthogonal Frequency Division Multiplexing (OFDM) systems assisted by efficient Multi-User Detection (MUD) techniques have recently attracted intensive research interests. The Maximum Likelihood Detection (MLD) arrangement was found to attain the best performance, although this was achieved at the cost of a computational complexity, which increases exponentially both with the number of users and with the number of bits per symbol transmitted by higher-order modulation schemes. By contrast, the Minimum Mean-Square Error (MMSE) SDMA-MUD exhibits a lower complexity at the cost of a performance loss. Forward Error Correction (FEC) schemes such as Turbo Trellis Coded Modulation (TTCM) may be efficiently amalgamated with SDMA-OFDM systems for the sake of improving the achievable performance. Genetic Algorithm (GA) based multiuser detection techniques have been shown to provide a good performance in MUD-aided Code Division Multiple Access (CDMA) systems. In this contribution a GA-aided MMSE MUD is proposed for employment in a TTCM-assisted SDMA-OFDM system, which is capable of achieving a similar performance to that attained by its MLD-aided counterpart at a significantly lower complexity, especially at high user loads

    Multiuser MIMO-OFDM Systems using Subcarrier Hopping

    No full text
    Recently space division multiple access (SDMA) assisted multiple-input–multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems invoking multiuser detection (MUD) techniques have attracted substantial research interest, which is capable of exploiting both transmitter multiplexing gain and receiver diversity gain. A new scheme referred to here as slowsubcarrierhopping (SSCH) assisted multiuser SDMA-OFDM, is proposed. It is shown that, with the aid of the so-called uniform SSCH (USSCH) pattern, the multiuser interference (MUI) experienced by the high-throughput SDMA-OFDM system can be effectively suppressed, resulting in a significant performance improvement. In the investigations conducted, the proposed USSCH-aided SDMA-OFDM system was capable of outperforming a range of SDMA-OFDM systems considered, including the conventional SDMA-OFDM system dispensing with the employment of frequency-hopping techniques. For example, at an Eb/N0 value of 12 dB, the proposed USSCH/SDMA-OFDM system reduced the bit error ratio (BER) by about three orders of magnitude, in comparison to the conventional SDMA-OFDM system, while maintaining a similar computational complexity

    Dynamical spin-spin coupling of quantum dots

    Full text link
    We carried out a nested Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the spin-spin coupling between two dynamical quantum dots under the influence of rotating transverse magnetic field. As a result of the rotating field, we predict a novel Ising type spin-spin coupling mechanism between quantum dots, whose strength is tunable via the magnitude of the rotating field. The strength of the new coupling could be comparable to the strength of the RKKY coupling. The dynamical coupling with the intristic RKKY coupling enables to construct a four level system of maximally entangled Bell states in a controllable manner

    Relation between directed polymers in random media and random bond dimer models

    Get PDF
    We reassess the relation between classical lattice dimer models and the continuum elastic description of a lattice of fluctuating polymers. In the absence of randomness we determine the density and line tension of the polymers in terms of the bond weights of hard-core dimers on the square and the hexagonal lattice. For the latter, we demonstrate the equivalence of the canonical ensemble for the dimer model and the grand-canonical description for polymers by performing explicitly the continuum limit. Using this equivalence for the random bond dimer model on a square lattice, we resolve a previously observed discrepancy between numerical results for the random dimer model and a replica approach for polymers in random media. Further potential applications of the equivalence are briefly discussed.Comment: 6 pages, 3 figure
    corecore