1,128 research outputs found
Pair production of neutralinos via gluon-gluon collisions
The production of a neutralino pair via gluon-gluon fusion is studied in the
minimal supersymmetric model(MSSM) at proton-proton colliders. The numerical
analysis of their production rates are carried out in the mSUGRA scenario. The
results show that this cross section may reach about 80 femto barn for
pair production and 23 femto barn
for pair production with suitable
input parameters at the future LHC collider. It shows that this loop mediated
process can be competitive with the quark-antiquark annihilation process at the
LHC.Comment: LaTex file, l4 pages, 5 EPS figure
Pair Production of the Lightest Chargino via Gluon-Gluon Collisions
The production of the lightest chargino pair from gluon-gluon fusion is
studied in the minimal supersymmetric model(MSSM) at proton-proton colliders.
We find that with the chosen parameters, the production rate of the subprocess
can be over 2.7 femto barn when the chargino is higgsino-like, and the
corresponding total cross section in proton-proton collider can reach 56 femto
barn at the LHC in the CP-conserving MSSM. It shows that this loop mediated
subprocess can be competitive with the standard Drell-Yan subprocess in
proton-proton colliders, especially at the LHC. Furthermore, our calculation
shows it would be possible to extract information about some CP-violating phase
parameters, if we collected enough chargino pair events.Comment: 39 pages, LaTex, 8 figure
Dynamical Structure Factor for the Alternating Heisenberg Chain: A Linked Cluster Calculation
We develop a linked cluster method to calculate the spectral weights of
many-particle excitations at zero temperature. The dynamical structure factor
is expressed as a sum of exclusive structure factors, each representing
contributions from a given set of excited states. A linked cluster technique to
obtain high order series expansions for these quantities is discussed. We apply
these methods to the alternating Heisenberg chain around the dimerized limit
(), where complete wavevector and frequency dependent spectral
weights for one and two-particle excitations (continuum and bound-states) are
obtained. For small to moderate values of the inter-dimer coupling parameter
, these lead to extremely accurate calculations of the dynamical
structure factors. We also examine the variation of the relative spectral
weights of one and two-particle states with bond alternation all the way up to
the limit of the uniform chain (). In agreement with Schmidt and
Uhrig, we find that the spectral weight is dominated by 2-triplet states even
at , which implies that a description in terms of triplet-pair
excitations remains a good quantitative description of the system even for the
uniform chain.Comment: 26 pages, 17 figure
A new ghost cell/level set method for moving boundary problems:application to tumor growth
In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth
β-Catenin Signaling Drives Differentiation and Proinflammatory Function of IRF8-Dependent Dendritic Cells.
β-Catenin signaling has recently been tied to the emergence of tolerogenic dendritic cells (DCs). In this article, we demonstrate a novel role for β-catenin in directing DC subset development through IFN regulatory factor 8 (IRF8) activation. We found that splenic DC precursors express β-catenin, and DCs from mice with CD11c-specific constitutive β-catenin activation upregulated IRF8 through targeting of the Irf8 promoter, leading to in vivo expansion of IRF8-dependent CD8α(+), plasmacytoid, and CD103(+)CD11b(-) DCs. β-Catenin-stabilized CD8α(+) DCs secreted elevated IL-12 upon in vitro microbial stimulation, and pharmacological β-catenin inhibition blocked this response in wild-type cells. Upon infections with Toxoplasma gondii and vaccinia virus, mice with stabilized DC β-catenin displayed abnormally high Th1 and CD8(+) T lymphocyte responses, respectively. Collectively, these results reveal a novel and unexpected function for β-catenin in programming DC differentiation toward subsets that orchestrate proinflammatory immunity to infection
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Absence of First-order Transition and Tri-critical Point in the Dynamic Phase Diagram of a Spatially Extended Bistable System in an Oscillating Field
It has been well established that spatially extended, bistable systems that
are driven by an oscillating field exhibit a nonequilibrium dynamic phase
transition (DPT). The DPT occurs when the field frequency is on the order of
the inverse of an intrinsic lifetime associated with the transitions between
the two stable states in a static field of the same magnitude as the amplitude
of the oscillating field. The DPT is continuous and belongs to the same
universality class as the equilibrium phase transition of the Ising model in
zero field [G. Korniss et al., Phys. Rev. E 63, 016120 (2001); H. Fujisaka et
al., Phys. Rev. E 63, 036109 (2001)]. However, it has previously been claimed
that the DPT becomes discontinuous at temperatures below a tricritical point
[M. Acharyya, Phys. Rev. E 59, 218 (1999)]. This claim was based on
observations in dynamic Monte Carlo simulations of a multipeaked probability
density for the dynamic order parameter and negative values of the fourth-order
cumulant ratio. Both phenomena can be characteristic of discontinuous phase
transitions. Here we use classical nucleation theory for the decay of
metastable phases, together with data from large-scale dynamic Monte Carlo
simulations of a two-dimensional kinetic Ising ferromagnet, to show that these
observations in this case are merely finite-size effects. For sufficiently
small systems and low temperatures, the continuous DPT is replaced, not by a
discontinuous phase transition, but by a crossover to stochastic resonance. In
the infinite-system limit the stochastic-resonance regime vanishes, and the
continuous DPT should persist for all nonzero temperatures
Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra
A state of matter is characterized by its symmetry breaking and elementary
excitations.
A supersolid is a state which breaks both translational symmetry and internal
symmetry.
Here, we review some past and recent works in phenomenological
Ginsburg-Landau theories, ground state trial wavefunctions and microscopic
numerical calculations. We also write down a new effective supersolid
Hamiltonian on a lattice.
The eigenstates of the Hamiltonian contains both the ground state
wavefunction and all the excited states (supersolidon) wavefunctions. We
contrast various kinds of supersolids in both continuous systems and on
lattices, both condensed matter and cold atom systems. We provide additional
new insights in studying their order parameters, symmetry breaking patterns,
the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure
Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino
The electroweak corrections to the partial widths of the decays including one-loop
diagrams of the third generation quarks and squarks, are investigated within
the Supersymmetric Standard Model. The relative corrections can reach the
values about 10%, therefore they should be taken into account for the precise
experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil
- …