26,507 research outputs found
Asymptotic Capacity of Large Relay Networks with Conferencing Links
In this correspondence, we consider a half-duplex large relay network, which
consists of one source-destination pair and relay nodes, each of which is
connected with a subset of the other relays via signal-to-noise ratio
(SNR)-limited out-of-band conferencing links. The asymptotic achievable rates
of two basic relaying schemes with the "-portion" conferencing strategy are
studied: For the decode-and-forward (DF) scheme, we prove that the DF rate
scales as ; for the amplify-and-forward (AF) scheme, we
prove that it asymptotically achieves the capacity upper bound in some
interesting scenarios as goes to infinity.Comment: submitted to IEEE Transactions on Communication
Asymptotic Capacity of Large Fading Relay Networks with Random Node Failures
To understand the network response to large-scale physical attacks, we
investigate the asymptotic capacity of a half-duplex fading relay network with
random node failures when the number of relays is infinitely large. In this
paper, a simplified independent attack model is assumed where each relay node
fails with a certain probability. The noncoherent relaying scheme is
considered, which corresponds to the case of zero forward-link channel state
information (CSI) at the relays. Accordingly, the whole relay network can be
shown equivalent to a Rayleigh fading channel, where we derive the
-outage capacity upper bound according to the multiple access (MAC)
cut-set, and the -outage achievable rates for both the
amplify-and-forward (AF) and decode-and-forward (DF) strategies. Furthermore,
we show that the DF strategy is asymptotically optimal as the outage
probability goes to zero, with the AF strategy strictly suboptimal
over all signal to noise ratio (SNR) regimes. Regarding the rate loss due to
random attacks, the AF strategy suffers a less portion of rate loss than the DF
strategy in the high SNR regime, while the DF strategy demonstrates more robust
performance in the low SNR regime.Comment: 24 pages, 5 figures, submitted to IEEE Transactions on Communication
- …