1,378 research outputs found

    Numerical investigation of the phase change in transpiration cooling with the VOF method

    Get PDF
    Transpiration cooling with phase change is numerically investigated in the present work. As shown in Figure 1, a liquid coolant flow is injected into a porous medium from the bottom side. The porous medium receives heat from the hot gas on the top surface and heats the coolant. Thus, phase change can occur in this porous medium. The surface temperature, the heat flux received by the porous medium, the phase distribution and the flow and cooling characteristics are the most important unknowns on this topic. Please download the full abstract below

    Synthesis and structures of O-anthrylmethyl-substituted hexahomotrioxacalix[3]arenes

    Get PDF
    O-Alkylation of 7,15,23-tri-tert-butyl-25,26,27-trihydroxy-2,3,10,11,18,19-hexahomo-3,11,19-trioxacalix[3]arene (1Hā‚ƒ) with 9-chloromethylanthracene 5 was carried out under different reaction conditions. Variation of the number of anthrylmethyl group introduced at the phenolic rim of hexahomotrioxacalix[3]arene 1Hā‚ƒ was achieved through selective O-alkylation using stoichiometric amounts of 9-chloromethylanthracene 5 in acetone to afford the mono-O-alkylated product 2Hā‚‚An, the di-O-alkylated product 3HAnā‚‚ and the tri-O-alkylated product partial-cone-4Anā‚ƒ, respectively. Interestingly, by using an acetone/benzene (1:1 v/v) mixed solvent system, the cone-4Anā‚ƒ was successfully synthesized. These results suggest that the solvent can also control the conformation of the O-alkylation products. The possible reaction routes of the cone-4Anā‚ƒ and partial-cone-4Anā‚ƒ are also discussed

    A pyrene-functionalized triazole-linked hexahomotrioxacalix[3]arene as a fluorescent chemosensor for ZnĀ²āŗ ions

    Get PDF
    A new pyrenyl appended hexahomotrioxacalix[3]arene L featuring 1,2,3-triazole linkers was synthesized as a fluorescent chemosensor for ZnĀ²āŗ in mixed aqueous media. It exhibited high affinity toward ZnĀ²āŗ, and the monomer and excimer emission of the pyrene moieties could be adjusted. The binding stoichiometry of the LĀ·ZnĀ²āŗ complex was determined to be 1:1, and the association constant (Ka) was found to be 7.05 Ɨ 10ā“ Mā»Ā¹. The binding behavior with ZnĀ²āŗ has been confirmed by Ā¹H NMR spectroscopic analysis

    Synthesis and evaluation of a novel fluorescent sensor based on hexahomotrioxacalix[3]arene for ZnĀ²+ and CdĀ²+

    Get PDF
    A novel type of selective and sensitive fluorescent sensor having triazole rings as the binding sites on the lower rim of a hexahomotrioxacalix[3]arene scaffold in a cone conformation is reported. This sensor has desirable properties for practical applications, including selectivity for detecting ZnĀ²āŗ and CdĀ²āŗ in the presence of excess competing metal ions at low ion concentration or as a fluorescence enhancement type chemosensor due to the cavity of calixarene changing from a ā€˜flattened-coneā€™ to a more-upright form and inhibition of PET. In contrast, the results suggested that receptor 1 is highly sensitive and selective for CuĀ²āŗ and FeĀ³āŗ as a fluorescence quenching type chemosensor due to the photoinduced electron transfer (PET) or heavy atom effect

    Effective solid-to-fluid heat transfer coefficient in EGS reservoirs

    Get PDF
    The present work developed a three-equation local thermal non-equilibrium model to predict the effective solid-to-fluid heat transfer coefficient in the enhanced geothermal system reservoirs based on the volume averaging method. Due to the high rock-to-fracture size ratio, the solid thermal resistance effect in the internal rocks cannot be neglected in the effective solid-to-fluid heat transfer coefficient. The present three-equation local thermal non-equilibrium model can consider the dynamic variation of the solid thermal resistance in transient heat transfer by introducing the penetration temperature difference. The model was validated by comparison with pore-scale numerical simulations and macro-scale LTNE model numerical simulations. The results show that the three-equation local thermal non-equilibrium model has a high accurac

    Click-modified hexahomotrioxacalix[3]arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol

    Get PDF
    A new type of chemosensor-based approach to the detection of 2,4,6-trinitrophenol (TNP) is described in this paper. Two hexahomotrioxacalix[3]arene-based chemosensors 1 and 2 were synthesized through click chemistry, which exhibited high binding affinity and selectivity toward TNP as evidenced by UVā€“vis and fluorescence spectroscopy studies. Ā¹H NMR titration analysis verified that CHā‹ÆO hydrogen bonding is demonstrated as the mode of interaction, which possibly facilitates effective charge-transfer

    Dynamical tunneling-assisted coupling of high-Q deformed microcavities using a free-space beam

    Get PDF
    We investigate the efficient free-space excitation of high-Q resonance modes in deformed microcavities via dynamical tunneling-assisted coupling. A quantum scattering theory is employed to study the free-space transmission properties, and it is found that the transmission includes the contribution from (1) the off-resonance background and (2) the on-resonance modulation, corresponding to the absence and presence of high-Q modes, respectively. The theory predicts asymmetric Fano-like resonances around high-Q modes in background transmission spectra, which are in good agreement with our recent experimental results. Dynamical tunneling across Kolmogorov-Arnold-Moser tori, which plays an essential role in the Fano-like resonance, is further studied. This efficient free-space coupling holds potential advantages to simplify experimental conditions and excite high-Q modes in higher-index-material microcavities
    • ā€¦
    corecore