199 research outputs found

    VLT near- to mid-IR imaging and spectroscopy of the M17 UC1-IRS5 region

    Full text link
    We investigate the surroundings of the hypercompact HII region M17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Five of the seven point sources in this region show LL-band excess emission. Geometric match is found between the H_2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H_2 emission is typical for dense PDRs, which are FUV pumped initially and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity L_IR in the range 1-20 micron is derived for three objects; we obtain 2.0x10^3 L_\sun for IRS5A, 13 L_\sun for IRS5C, and 10 L_\sun for B273A. IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (~ 9 M_\sun, ~1x10^5 yrs); it might have terminated accretion due to the feedback from the stellar activities (radiation pressure, outflow) and the expanding HII region of M17. UC1 might also have terminated accretion because of the expanding hypercompact HII region ionized by itself. The disk clearing process of the low-mass YSOs in this region might be accelerated by the expanding HII region. The outflows driven by UC1 are running in south-north with its northeastern side suppressed by the expanding ionization front of M17; the blue-shifted outflow lobe of IRS5A is seen in two types of tracers along the same line of sight in the form of H_2 emission filament and mid-emission. The H_2 line ratios probe the properties of M17 SW PDR, which is confirmed to have a clumpy structure with two temperature distributions: warm, dense molecular clumps with n_H>10^5 cm^-3 and T~575 K and cooler atomic gas with n_H~3.7x10^3-1.5x10^4 cm-3 and T~50-200 K.Comment: accepted for publication in A&A, 19 pages, 15 figures, 5 table

    CEN34 -- High-Mass YSO in M17 or Background Post-AGB Star?

    Full text link
    We investigate the proposed high-mass young stellar object (YSO) candidate CEN34, thought to be associated with the star forming region M17. Its optical to near-infrared (550-2500 nm) spectrum reveals several photospheric absorption features, such as H{\alpha}, Ca triplet and CO bandheads but lacks any emission lines. The spectral features in the range 8375-8770{\AA} are used to constrain an effective temperature of 5250\pm250 (early-/mid-G) and a surface gravity of 2.0\pm0.3 (supergiant). The spectral energy distribution of CEN34 resembles the SED of a high-mass YSO or an evolved star. Moreover, the observed temperature and surface gravity are identical for high-mass YSOs and evolved stars. The radial velocity relative to LSR (V_LSR) of CEN34 as obtained from various photospheric lines is of the order of -60 km/s and thus distinct from the +25 km/s found for several OB stars in the cluster and for the associated molecular cloud. The SED modeling yields ~ 10^{-4} M_sun of circumstellar material which contributes only a tiny fraction to the total visual extinction (11 mag). In the case of a YSO, a dynamical ejection process is proposed to explain the V_LSR difference between CEN34 and M17. Additionally, to match the temperature and luminosity, we speculate that CEN34 had accumulated the bulk of its mass with accretion rate > 4x10^{-3} M_sun/yr in a very short time span (~ 10^3 yrs), and currently undergoes a phase of gravitational contraction without any further mass gain. However, all the aforementioned characteristics of CEN34 are compatible with an evolved star of 5-7 M_sun and an age of 50-100 Myrs, most likely a background post-AGB star with a distance between 2.0 kpc and 4.5 kpc. We consider the latter classification as the more likely interpretation. Further discrimination between the two possible scenarios should come from the more strict confinement of CEN34's distance.Comment: 8 pages, 8 figures, 2 tables; accepted by A&

    No-Reference Quality Assessment for 360-degree Images by Analysis of Multi-frequency Information and Local-global Naturalness

    Full text link
    360-degree/omnidirectional images (OIs) have achieved remarkable attentions due to the increasing applications of virtual reality (VR). Compared to conventional 2D images, OIs can provide more immersive experience to consumers, benefitting from the higher resolution and plentiful field of views (FoVs). Moreover, observing OIs is usually in the head mounted display (HMD) without references. Therefore, an efficient blind quality assessment method, which is specifically designed for 360-degree images, is urgently desired. In this paper, motivated by the characteristics of the human visual system (HVS) and the viewing process of VR visual contents, we propose a novel and effective no-reference omnidirectional image quality assessment (NR OIQA) algorithm by Multi-Frequency Information and Local-Global Naturalness (MFILGN). Specifically, inspired by the frequency-dependent property of visual cortex, we first decompose the projected equirectangular projection (ERP) maps into wavelet subbands. Then, the entropy intensities of low and high frequency subbands are exploited to measure the multi-frequency information of OIs. Besides, except for considering the global naturalness of ERP maps, owing to the browsed FoVs, we extract the natural scene statistics features from each viewport image as the measure of local naturalness. With the proposed multi-frequency information measurement and local-global naturalness measurement, we utilize support vector regression as the final image quality regressor to train the quality evaluation model from visual quality-related features to human ratings. To our knowledge, the proposed model is the first no-reference quality assessment method for 360-degreee images that combines multi-frequency information and image naturalness. Experimental results on two publicly available OIQA databases demonstrate that our proposed MFILGN outperforms state-of-the-art approaches

    A Chemical Study of Nine Star-forming Regions with Evidence of Infall Motion

    Full text link
    The study of the physical and chemical properties of gas infall motion in the molecular clumps helps us understand the initial stages of star formation. We used the FTS wide-sideband mode of the IRAM 30-m telescope to observe nine infall sources with significant double peaked blue line profile. The observation frequency range are 83.7 - 91.5 GHz and 99.4 - 107.2 GHz. We have obtained numbers of molecular line data. Using XCLASS, a total of 7 to 27 different molecules and isotopic transition lines have been identified in these nine sources, including carbon chain molecules such as CCH, c-C3H2 and HC3N. According to the radiation transfer model, we estimated the rotation temperatures and column densities of these sources. Chemical simulations adopting a physical model of HMSFRs are used to fit the observed molecular abundances. The comparison shows that most sources are in the early HMPO stage, with the inner temperature around several ten K
    • …
    corecore