58 research outputs found

    Spectral Compressive Sensing with Model Selection

    Full text link
    The performance of existing approaches to the recovery of frequency-sparse signals from compressed measurements is limited by the coherence of required sparsity dictionaries and the discretization of frequency parameter space. In this paper, we adopt a parametric joint recovery-estimation method based on model selection in spectral compressive sensing. Numerical experiments show that our approach outperforms most state-of-the-art spectral CS recovery approaches in fidelity, tolerance to noise and computation efficiency.Comment: 5 pages, 2 figures, 1 table, published in ICASSP 201

    Further analysis of natural antibodies against ischemic stroke

    Get PDF
    BackgroundOur previous study revealed that circulating levels of IgG natural antibodies (NAbs) for vascular endothelial growth factor receptor 1 (VEGFR1) were significantly decreased in patients with arteriosclerosis compared with control subjects. To enhance the sensitivity of an enzyme-linked immunosorbent assay (ELISA) developed in-house for antibody testing, the present work was designed to investigate additive signals in the in-house ELISA developed with the combination of two or more linear peptide antigens derived from target proteins of interest, including VEGFR1, oxidized low-density lipoprotein receptor 1 (LOX-1), interleukins 6 (IL6) and 8 (IL8).MethodsA total of 218 patients with ischemic stroke and 198 healthy controls were enrolled and an in-house ELISA was developed with linear peptides derived from VEGFR1, LOX-1, IL6, and IL8 to detect their IgG levels in plasma.ResultsCompared with control subjects, plasma levels of IgG NAbs for the IL6-IL8 combination were significantly lower in female patients (Z = −3.149, P = 0.002), whereas male patients showed significantly lower levels of plasma anti-VEGFR IgG (Z = −3.895, P < 0.001) and anti-LOX1a IgG (Z = −4.329, P < 0.001). Because plasma levels of IgG NAbs for both the IL6-IL8-LOX1a-LOX1b combination and the VEGFR1a-VEGFR1b-LOX1a-LOX1b combination were significantly lower in the patient group than the control group, receiver operating characteristic (ROC) analysis was performed and the results showed that the VEGFR1a-VEGFR1b-LOX1a-LOX1b combination had an area under the ROC curve (AUC) of 0.70 for its IgG assay with a sensitivity of 27.1% against the specificity of 95.5% and that the IL6-IL8-LOX1a-LOX1b combination had an AUC of 0.67 for its IgG assay with a sensitivity of 21.1% against the specificity of 95.5%. Spearman correlation analysis showed that plasma IgG NAbs against the IL6-IL8 combination were positively correlated with carotid plaque size only in male patients (r = 0.270, p = 0.002).ConclusionsCirculating IgG NAbs for the target molecules studied may be potential biomarkers for a subgroup of ischemic stroke and also contribute to the gender differences in clinical presentation of the disease

    Laser-based defect characterization and removal process for manufacturing fused silica optic with high ultraviolet laser damage threshold

    Get PDF
    Residual processing defects during the contact processing processes greatly reduce the anti-ultraviolet (UV) laser damage performance of fused silica optics, which significantly limited development of high-energy laser systems. In this study, we demonstrate the manufacturing of fused silica optics with a high damage threshold using a CO2 laser process chain. Based on theoretical and experimental studies, the proposed uniform layer-by-layer laser ablation technique can be used to characterize the subsurface mechanical damage in three-dimensional full aperture. Longitudinal ablation resolutions ranging from nanometers to micrometers can be realized; the minimum longitudinal resolution is < 5 nm. This technique can also be used as a crack-free grinding tool to completely remove subsurface mechanical damage, and as a cleaning tool to effectively clean surface/subsurface contamination. Through effective control of defects in the entire chain, the laser-induced damage thresholds of samples fabricated by the CO2 laser process chain were 41% (0% probability) and 65.7% (100% probability) higher than those of samples fabricated using the conventional process chain. This laser-based defect characterization and removal process provides a new tool to guide optimization of the conventional finishing process and represents a new direction for fabrication of highly damage-resistant fused silica optics for high-energy laser applications

    An efficient double-fluorescence approach for generating fiber-2-edited recombinant serotype 4 fowl adenovirus expressing foreign gene

    Get PDF
    Recently, the infection of serotype 4 fowl adenovirus (FAdV-4) in chicken flocks has become endemic in China, which greatly threatens the sustainable development of poultry industry. The development of recombinant FAdV-4 expressing foreign genes is an efficient strategy for controlling both FAdV-4 and other important poultry pathogens. Previous reverse genetic technique for generating the recombinant fowl adenovirus is generally inefficient. In this study, a recombinant FAdV-4 expressing enhanced green fluorescence protein (EGFP), FA4-EGFP, was used as a template virus and directly edited fiber-2 gene to develop an efficient double-fluorescence approach to generate recombinant FAdV-4 through CRISPR/Cas9 and Cre-Loxp system. Moreover, using this strategy, a recombinant virus FAdV4-HA(H9) stably expressing the HA gene of H9N2 influenza virus was generated. Chicken infection study revealed that the recombinant virus FAdV4-HA(H9) was attenuated, and could induce haemagglutination inhibition (HI) titer against H9N2 influenza virus at early time points and inhibit the viral replication in oropharynx. All these demonstrate that the novel strategy for constructing recombinant FAdV-4 expressing foreign genes developed here paves the way for rapidly developing attenuated FAdV-4-based recombinant vaccines for fighting the diseases caused by both FAdV-4 and other pathogens

    A novel recombinant serotype 4 fowl adenovirus expressing fiber-2 protein of duck adenovirus 3

    Get PDF
    Recently, the highly pathogenic serotype 4 fowl adenovirus (FAdV-4) and duck adenovirus 3 (DAdV-3) were outbroken and widespread, causing substantial economic losses to the duck industry. Therefore, there is an urgent need to generate a recombinant genetic engineering vaccine candidate against both FAdV-4 and DAdV-3. In this study, a novel recombinant FAdV-4 expressing the Fiber-2 protein of DAdV-3, designated as rFAdV-4-Fiber-2/DAdV-3, was generated based on CRISPR/Cas9 and Cre-LoxP systems. Indirect immunofluorescence assay (IFA) and western blot (WB) showed that the Fiber-2 protein of DAdV-3 in rFAdV-4-Fiber-2/DAdV-3 was expressed successfully. Moreover, the growth curve revealed that rFAdV-4-Fiber-2/DAdV-3 replicated efficiently in LMH cells and even showed a stronger replication ability compared to the wild type FAdV-4. The generation of the recombinant rFAdV-4-Fiber-2/DAdV-3 provides a potential vaccine candidate against both FAdV-4 and DAdV-3

    Structural model and capacity determination of underground reservoir in goaf: a case study of Shendong mining area in China

    No full text
    Abstract The large-scale extraction of coal resources in the western mining areas of China has resulted in a significant loss of water resources, which is a challenge for coordinating resource extraction with ecological preservation in the mining areas. Although underground reservoir technology can effectively solve this problem, measuring the storage capacity of underground reservoirs through engineering experiments is costly and time-consuming. Currently, there is a lack of accurate, reliable, and low-cost theoretical calculation solutions, which greatly restricts the promotion and application of underground reservoir technology. The theoretical calculation methods for underground reservoir capacity were studied based on parameters from the Shendong mining area in China. A water storage structure model for coal mine underground water reservoirs was established, taking into account the settlement boundaries of the bedrock and loose layers in shallow coal seams, based on the key layer theory and the spatial structure model of the mining roof. The mathematical expression for the load on the coal-rock mass in the goaf was derived considering the rock breaking characteristics of the mining roof. The model determined the range of each water storage area, including the zone of loose body, zone of gradual load, and the compacted zone, based on the strength of the water storage capacity. The key parameters for calculating the water storage capacity were determined using a modified model for shallow thick loose layers and thin bedrock movement. Finally, a calculation method for the storage capacity was obtained. Based on the real data from the 22,615 working face of a mine in the Shendong mining area, the water storage capacity of the underground reservoir in the goaf was jointly calculated using FLAC3D, Surfer 12.0 and the proposed calculation method. The calculated water storage capacity was approximately 1.0191 million m3. Although this result was 2.20% smaller than the on-site water pumping experiment data, it still verifies the feasibility of the above calculation method for determining the water storage capacity of underground water reservoirs

    STUDY ON THE EXPERIMENTAL TECHNIQUES OF DYNAMIC FRACTURE TOUGHNESS OF MATERIALS BASED ON INSTRUMENTED CHARPY IMPACT TEST

    No full text
    A measuring method was proposed to evaluate the dynamic fracture toughness of materials using pre-cracked Charpy impact specimens in this work. Different from the previous methods,a simple way to calculate the dynamic stress intensity factors of three-point bending specimen was developed based on the calculation of fracture specimen’s stiffness using Timoshenko beam theory. The fracture initiation time was detected experimentally and then used to determine the dynamic fracture toughness of materials. The calculated values were compared with the results obtained from finite element simulation,a good agreement was found from the comparison between the theoretical calculation and FEA,indicating that the current method proposed in this study is accurate,reliable and convenient for engineering application

    The Solid State 13C NMR Study of Gamma Radiation of Ethylene-Octene Copolymer

    Get PDF
    Ethylene-octene copolymer (POE) samples exposed to γ-radiation under a series of absorbed doses have been investigated using thermal analysis, sol-gel analysis and solid state 13C nuclear magnetic Resonance (NMR). The chemical shift of POE was assigned and peak evolution as a function of radiation dose was discussed. An obviously evolution is that the peak area of 33.6 ppm decreases as a function of the increase of radiation dose, and at the same time, the peak shape broadens gradually. This indicates that the chain scission occurred between α-C and branch chain C (methine) or between C1 (the sidegroup hexyl) and branch chain C (methane) after radiation. The chain scission is severer with the increase of absorbed dose.The 13C NMR spectra of the corresponding gels confirmed the result. The variation in linewidth of the resonance at 33.6 ppm in samples of POE irradiated to different doses was attributed to information of chain, scission, new cross linking, and crystalline components
    • …
    corecore