70 research outputs found

    APAUNet: Axis Projection Attention UNet for Small Target in 3D Medical Segmentation

    Full text link
    In 3D medical image segmentation, small targets segmentation is crucial for diagnosis but still faces challenges. In this paper, we propose the Axis Projection Attention UNet, named APAUNet, for 3D medical image segmentation, especially for small targets. Considering the large proportion of the background in the 3D feature space, we introduce a projection strategy to project the 3D features into three orthogonal 2D planes to capture the contextual attention from different views. In this way, we can filter out the redundant feature information and mitigate the loss of critical information for small lesions in 3D scans. Then we utilize a dimension hybridization strategy to fuse the 3D features with attention from different axes and merge them by a weighted summation to adaptively learn the importance of different perspectives. Finally, in the APA Decoder, we concatenate both high and low resolution features in the 2D projection process, thereby obtaining more precise multi-scale information, which is vital for small lesion segmentation. Quantitative and qualitative experimental results on two public datasets (BTCV and MSD) demonstrate that our proposed APAUNet outperforms the other methods. Concretely, our APAUNet achieves an average dice score of 87.84 on BTCV, 84.48 on MSD-Liver and 69.13 on MSD-Pancreas, and significantly surpass the previous SOTA methods on small targets.Comment: Accepted by ACCV202

    YONA: You Only Need One Adjacent Reference-frame for Accurate and Fast Video Polyp Detection

    Full text link
    Accurate polyp detection is essential for assisting clinical rectal cancer diagnoses. Colonoscopy videos contain richer information than still images, making them a valuable resource for deep learning methods. Great efforts have been made to conduct video polyp detection through multi-frame temporal/spatial aggregation. However, unlike common fixed-camera video, the camera-moving scene in colonoscopy videos can cause rapid video jitters, leading to unstable training for existing video detection models. Additionally, the concealed nature of some polyps and the complex background environment further hinder the performance of existing video detectors. In this paper, we propose the \textbf{YONA} (\textbf{Y}ou \textbf{O}nly \textbf{N}eed one \textbf{A}djacent Reference-frame) method, an efficient end-to-end training framework for video polyp detection. YONA fully exploits the information of one previous adjacent frame and conducts polyp detection on the current frame without multi-frame collaborations. Specifically, for the foreground, YONA adaptively aligns the current frame's channel activation patterns with its adjacent reference frames according to their foreground similarity. For the background, YONA conducts background dynamic alignment guided by inter-frame difference to eliminate the invalid features produced by drastic spatial jitters. Moreover, YONA applies cross-frame contrastive learning during training, leveraging the ground truth bounding box to improve the model's perception of polyp and background. Quantitative and qualitative experiments on three public challenging benchmarks demonstrate that our proposed YONA outperforms previous state-of-the-art competitors by a large margin in both accuracy and speed.Comment: 11 pages, 3 figures, Accepted by MICCAI202

    Semantic operations of multiple soft sets under conflict

    Get PDF
    AbstractMolodtsov initiated the concept of soft set theory, which can be used as a generic mathematical tool for dealing with uncertainty. Description Logics (DLs) are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way. Nowadays, properties and semantics of ontology constructs mainly are determined by DLs. In this paper we investigate semantic operations of multiple standard soft sets by using domain ontologies (i.e., DL intensional knowledge bases). Concretely, we give some semantic operations such as complement, restricted difference, extended union, restricted intersection, restricted union, extended intersection, AND, and OR for (multiple) standard soft sets from a semantic point of view. Especially, we also present an approach to deal with conflict from a semantic point of view when we define these semantic operations. Moreover, the basic properties and implementation methods of these semantic operations under conflict are also presented and discussed

    Association of Affected Neurocircuitry With Deficit of Response Inhibition and Delayed Gratification in Attention Deficit Hyperactivity Disorder: A Narrative Review

    Get PDF
    The neural networks that constitute corticostriatothalamocortical circuits between prefrontal cortex and subcortical structure provide a heuristic framework for bridging gaps between neurocircuitry and executive dysfunction in attention deficit hyperactivity disorder (ADHD). “Cool” and “Hot” executive functional theory and the models of dual pathway are supposed to be applied within the neuropsychology of ADHD. The theoretical model elaborated response inhibition and delayed gratification in ADHD. We aimed to review and summarize the literature about the circuits on ADHD and ADHD-related comorbidities, as well as the effects of neurocircuitry on the executive dysfunction in ADHD

    ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic Diffusion Models

    Full text link
    Colonoscopy analysis, particularly automatic polyp segmentation and detection, is essential for assisting clinical diagnosis and treatment. However, as medical image annotation is labour- and resource-intensive, the scarcity of annotated data limits the effectiveness and generalization of existing methods. Although recent research has focused on data generation and augmentation to address this issue, the quality of the generated data remains a challenge, which limits the contribution to the performance of subsequent tasks. Inspired by the superiority of diffusion models in fitting data distributions and generating high-quality data, in this paper, we propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks. Specifically, ArSDM utilizes the ground-truth segmentation mask as a prior condition during training and adjusts the diffusion loss for each input according to the polyp/background size ratio. Furthermore, ArSDM incorporates a pre-trained segmentation model to refine the training process by reducing the difference between the ground-truth mask and the prediction mask. Extensive experiments on segmentation and detection tasks demonstrate the generated data by ArSDM could significantly boost the performance of baseline methods.Comment: Accepted by MICCAI-202
    • …
    corecore