24 research outputs found

    Hypergeometric function expressions for the molecule-micropore Lennard--Jones potential

    Get PDF
    We present hypergeometric function expressions for the molecule-micropore Lennard--Jones potential in cylindrical pores, in which the cylindrical wall can be a surface, or have thickness or have infinite thickness. These expressions are useful in theoretical study and computer simulations of fluids in micropore of circular cross sections

    The Influence of Dietary Gallic Acid on Growth Performance and Plasma Antioxidant Status of High and Low Weaning Weight Piglets.

    Full text link
    peer reviewedThis study evaluated the effects of dietary gallic acid (GA) on growth performance, diarrhea incidence and plasma antioxidant status of weaned piglets regardless of whether weaning weight was high or low. A total of 120 weaned piglets were randomly allocated to four treatments in a 42-day experiment with a 2 × 2 factorial treatment arrangement comparing different weaning weights (high weight (HW) or low weight (LW), 8.49 ± 0.18 kg vs. 5.45 ± 0.13 kg) and dietary treatment (without supplementation (CT) or with supplementation of 400 mg/kg of GA). The results showed that HW piglets exhibited better growth performance and plasma antioxidant capacity. Piglets supplemented with GA had higher body weight (BW) on day 42 and average daily gain (ADG) from day 0 to 42 compared to the control piglets, which is mainly attributed to the specific improvement on BW and ADG of LW piglets by the supplementation of GA. The decreased values of diarrhea incidence were seen in piglets fed GA, more particularly in LW piglets. In addition, dietary GA numerically reduced malondialdehyde (MDA) content in plasma of LW piglets. In conclusion, our study suggests that dietary GA may especially improve the growth and health in LW weaned piglets

    Effects of Dietary Supplementation with Glycerol Monolaurate (GML) or the Combination of GML and Tributyrin on Growth Performance and Rumen Microbiome of Weaned Lambs

    No full text
    Our objective was to evaluate the effects of dietary supplementation with glycerol monolaurate (GML) or the combination (Solider, SOL) of GML and tributyrin (TB) on the growth performance and rumen microbiome of weaned lambs. Thirty-six male Hu lambs (11.46 ± 0.88 kg BW and 40 ± 5 days of age) were divided into three treatment groups: (1) CON: basal diet, (2) GML: basal diet supplemented with GML at 1.84 g/kg DM, and (3) SOL: basal diet supplemented with SOL at 3 g/kg DM. GML increased the final BW (p = 0.04) and ADG (p = 0.02) compared with CON. There were no significant differences in the DMI (p > 0.10) among the three treatment groups. GML and SOL tended to decrease the dry matter intake/average daily gain (p = 0.07) compared with CON. GML tended to increase the apparent digestibility of CP (p = 0.08) compared with CON. SOL increased the apparent digestibility of NDF (p = 0.04) compared with CON. The Chao1 and Shannon indexes of SOL were both significantly higher than those of the other groups (p = 0.01). LefSE analysis showed that Bifidobacteriaceae of the Bifidobacteriales was enriched in the GML group. In addition, compared with GML, SOL reduced the relative abundance of Actinobacteria (p < 0.01) and increased the relative abundance of Verrucomicrobia (p = 0.05), and GML reduced the relative abundance of Ruminococcus (p = 0.03). Our results indicated that dietary supplementation with GML or SOL improved growth performance and feed conversion, and changed the rumen microbiome of weaned lambs

    Gallic acid mitigates LPS-induced inflammatory response via suppressing NF-κB signalling pathway in IPEC-J2 cells.

    Full text link
    peer reviewedGallic acid is a phenolic compound that exhibits antibacterial, antioxidative and anti-inflammatory functions. In a previous study, we found that dietary supplementation with gallic acid decreased incidence of diarrhoea and protected intestinal integrity in weaning piglets. However, the underlying mechanism remains unclear. Here, a pig intestinal epithelial cell line (IPEC-J2) was used as an in vitro model to explore the antioxidant and anti-inflammatory capacity of gallic acid. IPEC-J2 cells were stimulated with hydrogen peroxide (H2 O2 ) and lipopolysaccharide (LPS) to establish oxidative and inflammatory models, respectively. Results showed that H2 O2 significantly decreased catalase (CAT) secretion and CAT mRNA abundance in the cells (p < 0.05), while pretreatment with gallic acid did not prevent the decrease in CAT expression induced by H2 O2 . However, gallic acid pretreatment mitigated the increased expression of the tumour necrosis factor-α and interleukin-8 genes caused by LPS in IPEC-J2 cells (p < 0.05). In addition, pretreatment with gallic acid significantly suppressed phosphorylation of NF-κB and IκBα in LPS-stimulated IPEC-J2 cells. Moreover, LPS stimulation decreased the protein abundance of zona occludens 1 (ZO-1) and occludin, while pretreatment with gallic acid preserved expression level of tight junction proteins ZO-1 and occludin in LPS-stimulated IPEC-J2 cells (p < 0.05). In conclusion, gallic acid may mitigate LPS-induced inflammatory responses by inhibiting the NF-κB signalling pathway, exerting positive effects on the barrier function of IPEC-J2 cells

    Dietary Supplementation with Probiotic <i>Bacillus licheniformis S6</i> Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets

    No full text
    Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL−S6 (probiotic) had altered intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetracycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen from each pen to collect blood and intestinal samples. Compared with the control group, dietary supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG) while reducing diarrhea incidence (p p SOD1, Nrf2, and HO-1 (p p p p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance decreased. In conclusion, dietary supplementation with the probiotic BL−S6 promoted intestinal integrity, which was associated, in part, with modulating intestinal barrier function and microbial diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea

    Live Yeast Supplementation in Gestating and Lactating Primiparous Sows Improves Immune Response in Dams and Their Progeny

    No full text
    The present study determined the effects of live yeast (LY) supplementation during middle&ndash;late gestation and the lactation period in primiparous sows on reproductive parameters, lactation performance, and immunity, and also explores the carryover effects in their offspring. On day (d) 60 of gestation, 16 crossbred primiparous sows were randomly assigned to two dietary treatments (with or without supplementation of 425 mg/kg of live yeast; LYT and CT, respectively) homogeneous for body weight (BW) and backfat thickness. Experimental diets were applied from day 60 of gestation to the end of lactation. At weaning, 60 piglets with an average BW of each treatment were selected based on their source litter and assigned to two groups corresponding to the original treatments received by their mothers. Each group had five replicates of six piglets each and was fed a basal diet for 42 days. The results showed that LY supplementation significantly increased the serum IgA and IgG concentrations of sows at farrowing and weaning stages, and of piglets on day 14 and 28 post weaning. No significant differences were found in reproductive and lactation performance, while minor effects were observed on antioxidant capacity. In conclusion, live yeast addition during middle&ndash;late gestation and the whole lactation period resulted in enhanced immunity of primiparous sows and their offspring, therefore, improving maternal and progeny health

    Dietary Supplementation with Probiotic Bacillus licheniformis S6 Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets

    No full text
    Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL&minus;S6 (probiotic) had altered intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetracycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen from each pen to collect blood and intestinal samples. Compared with the control group, dietary supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG) while reducing diarrhea incidence (p &lt; 0.05). Probiotics enhanced superoxidase dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in serum (p &lt; 0.05), and increased the level of mRNA expression of SOD1, Nrf2, and HO-1 (p &lt; 0.05) in the jejunum mucosa. Moreover, supplementation with probiotics improved intestinal mucosal integrity as evidenced by higher villus heights and a higher ratio of villus heights to crypt depths (duodenum and jejunum) and higher mRNA and protein levels of occludin and ZO-1 in jejunum mucosa (p &lt; 0.05). The intestinal sIgA levels (p &lt; 0.05) were elevated in the probiotic group, and that of serum immunoglobulin A (IgA) tended to be higher (p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance decreased. In conclusion, dietary supplementation with the probiotic BL&minus;S6 promoted intestinal integrity, which was associated, in part, with modulating intestinal barrier function and microbial diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea

    The Effects of Dietary Silybin Supplementation on the Growth Performance and Regulation of Intestinal Oxidative Injury and Microflora Dysbiosis in Weaned Piglets

    No full text
    Oxidative stress is the major incentive for intestinal dysfunction in weaned piglets, which usually leads to growth retardation or even death. Silybin has caught extensive attention due to its antioxidant properties. Herein, we investigated the effect of dietary silybin supplementation on growth performance and determined its protective effect on paraquat (PQ)-induced intestinal oxidative damage and microflora dysbiosis in weaned piglets. In trial 1, a total of one hundred twenty healthy weaned piglets were randomly assigned into five treatments with six replicate pens per treatment and four piglets per pen, where they were fed basal diets supplemented with silybin at 0, 50, 100, 200, or 400 mg/kg for 42 days. In trial 2, a total of 24 piglets were randomly allocated to two dietary treatments with 12 replicates per treatment and 1 piglet per pen: a basal diet or adding 400 mg/kg silybin to a basal diet. One-half piglets in each treatment were given an intraperitoneal injection of paraquat (4 mg/kg of body weight) or sterile saline on day 18. All piglets were euthanized on day 21 for sample collection. The results showed that dietary supplementation with 400 mg/kg silybin resulted in a lower feed conversion ratio, diarrhea incidence, and greater antioxidant capacity in weaned piglets. Dietary silybin enhanced intestinal antioxidant capacity and mitochondrial function in oxidative stress piglets induced by PQ. Silybin inhibited mitochondria-associated endogenous apoptotic procedures and then improved the intestinal barrier function and morphology of PQ-challenged piglets. Moreover, silybin improved intestinal microbiota dysbiosis induced by the PQ challenge by enriching short-chain fatty-acid-producing bacteria, which augmented the production of acetate and propionate. Collectively, these findings indicated that dietary silybin supplementation linearly decreased feed conversion ratio and reduced diarrhea incidence in normal conditions, and effectively alleviated oxidative stress-induced mitochondrial dysfunction, intestinal damage, and microflora dysbiosis in weaned piglets

    Study on the Wind Deviation Characteristics of Y-Type Insulator String under the Action of Strong Wind

    No full text
    Under the action of extreme wind load, the overhead transmission line will generate a wind deflection flashover phenomenon, which seriously affects the normal operation of the transmission system and causes significant losses. Y-type insulator string (hereinafter referred to as Y-string) is an optimized structural form to reduce the wind deflection flashover in windy areas, and the dynamic mechanical characteristics of Y-string under the action of pulsating wind is an important factor that influences the design of the overhead transmission line. The calculation method of pulsating wind load and the static calculation method of wind deflection displacement of Y-string are obtained through theoretical derivation. The mathematical software is used to simulate the time course of pulsating wind speed and convert it into the time course of wind load, establish the finite element model of insulator string, simulate and analyze the wind deflection process of Y-string under the action of pulsating wind by using the finite element method, and calculate the horizontal displacement of Y-string under the excitation of pulsating wind and make a comparative analysis with the results of the static calculations. The results show that the wind deflection displacement of the Y-string under pulsating wind is 1.12–1.28 times that under steady-state wind, which reveals the reason for the wind deflection flashover phenomenon and provides theoretical references for the design and improvement of overhead transmission lines

    Evaluation of Available Energy and Standardized Ileal Digestibility of Amino Acids in Fermented Flaxseed Meal for Growing Pigs.

    Full text link
    editorial reviewedFlaxseed meal (FSM) is a byproduct of flaxseed oil extraction which has rich nutritional value and can be used as a high-quality new protein ingredient. However, the anti-nutrient factor (ANF) in FSM restricts its potential application in feed. The strategy of microbial fermentation is a highly effective approach to reducing ANF in FSM and enhancing its feeding value. However, evaluation of the nutritional value of fermented flaxseed meal (FFSM) in growing pigs has not yet been conducted. Thus, the purpose of this study was to investigate the nutritional value of FFSM in growing pigs and comparison of the effect of fermentation treatment on improving the nutritional value of FSM. Two experiments were conducted to determine the available energy value, apparent digestibility of nutrients, and standard ileal digestibility of amino acids of FSM and FFSM in growing pigs. The results showed as follows: (1) Fermentation treatment increased the levels of crude protein (CP), Ca and P in FSM by 2.86%, 9.54% and 4.56%, while decreasing the concentration of neutral detergent fiber (NDF) and acid detergent fiber (ADF) by 34.09% and 12.71%, respectively (p < 0.05); The degradation rate of CGs in FSM was 54.09% (p < 0.05); (2) The digestible energy (DE) and metabolic energy (ME) of FSM and FFSM were 14.54 MJ/kg, 16.68 MJ/kg and 12.85 MJ/kg, 15.24 MJ/kg, respectively; (3) Compared with FSM, dietary FFSM supplementation significantly increased the apparent digestibility of CP, NDF, ADF, Ca, and P of growing pigs (p < 0.05) and significantly increased the standard ileal digestibility of methionine (p < 0.05). These results indicate that fermentation treatment could effectively enhance the nutritional value of FSM and provide basic theoretical data for the application of FFSM in pig production
    corecore