2,224 research outputs found

    The mRNA expression of SETD2 in human breast cancer: Correlation with clinico-athological parameters

    Get PDF
    BACKGROUND: SET domain containing protein 2 (SETD2) is a histone methyltransferase that is involved in transcriptional elongation. There is evidence that SETD2 interacts with p53 and selectively regulates its downstream genes. Therefore, it could be implicated in the process of carcinogenesis. Furthermore, this gene is located on the short arm of chromosome 3p and we previously demonstrated that the 3p21.31 region of chromosome 3 was associated with permanent growth arrest of breast cancer cells. This region includes closely related genes namely: MYL3, CCDC12, KIF9, KLHL18 and SETD2. Based on the biological function of these genes, SETD2 is the most likely gene to play a tumour suppressor role and explain our previous findings. Our objective was to determine, using quantitative PCR, whether the mRNA expression levels of SETD2 were consistent with a tumour suppressive function in breast cancer. This is the first study in the literature to examine the direct relationship between SETD2 and breast cancer. METHODS: A total of 153 samples were analysed. The levels of transcription of SETD2 were determined using quantitative PCR and normalized against (CK19). Transcript levels within breast cancer specimens were compared to normal background tissues and analyzed against conventional pathological parameters and clinical outcome over a 10 year follow-up period. RESULTS: The levels of SETD2 mRNA were significantly lower in malignant samples (p = 0.0345) and decreased with increasing tumour stage. SETD2 expression levels were significantly lower in samples from patients who developed metastasis, local recurrence, or died of breast cancer when compared to those who were disease free for > 10 years (p = 0.041). CONCLUSION: This study demonstrates a compelling trend for SETD2 transcription levels to be lower in cancerous tissues and in patients who developed progressive disease. These findings are consistent with a possible tumour suppressor function of this gene in breast cancer

    Prostate transglutaminase (TGase-4) antagonizes the anti-tumour action of MDA-7/IL-24 in prostate cancer

    Get PDF
    Background Transglutamiase-4 (TGase-4), also known as prostate transglutaminase, belongs to the TGase family and is uniquely expressed in the prostate gland. The functions of this interesting protein are not clearly defined. In the present study, we have investigated an unexpected link between TGase-4 and the melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24), a cytokine known to regulate the growth and apoptosis of certain cancer and immune cells. Methods Frozen sections of normal and malignant human prostate tissues and human prostate cancer (PCa) cell lines PC-3 and CA-HPV-10, cell lines expressing low and high levels of TGase-4, and recombinant MDA-7/IL-24 (rhMDA-7/IL-24) were used. Expression construct for human TGase-4 was generated using a mammalian expression vector with full length human TGase-4 isolated from normal human prostate tissues. PC-3 cells were transfected with expression construct or control plasmid. Stably transfected cells for control transfection and TGase-4 over expression were created. Similarly, expression of TGase-4 in CA-HPV-10 cells were knocked down by way of ribozyme transgenes. Single and double immunofluorescence microscopy was used for localization and co-localization of TGase-4 and MDA-7/IL-24 in PCa tissues and cells with antibodies to TGase-4; MDA-7/IL-24; IL-20alpha; IL-20beta and IL-22R. Cell-matrix adhesion, attachment and migration were by electric cell substrate impedance sensing and growth by in vitro cell growth assay. A panel of small molecule inhibitors, including Akt, was used to determine signal pathways involving TGase-4 and MDA-7/IL-24. Results We initially noted that MDA-7 resulted in inhibition of cell adhesion, growth and migration of human PCa PC-3 cells which did not express TGase-4. However, after the cells over-expressed TGase-4 by way of transfection, the TGase-4 expressing cells lost their adhesion, growth and migratory inhibitory response to MDA-7. On the other hand, CA-HPV-10 cells, a cell type naturally expressing high levels of TGase-4, had a contrasting response to MDA-7 when compared with PC-3 cells. Inhibitor to Akt reversed the inhibitory effect of MDA-7, only in PC-3 control cells, but not the TGase-4 expressing PC-3 cells. In human prostate tissues, TGase-4 was found to have a good degree of co-localization with one of the MDA-7 receptor complexes, IL-20Ra. Conclusion The presence of TGase-4 has a biological impact on a prostate cancer cell's response to MDA-7. TGase-4, via mechanism(s) yet to be identified, blocked the action of MDA-7 in prostate cancer cells. This has an important implication when considering the use of MDA-7 as a potential anticancer cytokine in prostate cancer therapies

    Suppression of the NF-κB cofactor Bcl3 inhibits mammary epithelial cell apoptosis and, in breast tumours, correlates with poor prognosis

    Get PDF
    Background Several transcription factors have been shown to play important roles in the regulation of apoptosis at the onset of murine mammary involution. These include LIF-activated STAT3, c/ebpdelta, Ap-1 and IKK/NF-κB-mediated regulation of death receptor ligands. A study of STAT3 and STAT5 transcriptional targets in mammary epithelial cells in vitro showed that both c/ebpdelta and c-fos (a component of Ap-1) were upregulated by STAT3, suggesting a degree of interdependence between these transcription factor pathways in mediating their apoptotic effects. Interestingly, while no NF-κB or IKK genes were significantly regulated by STATs, the NF-κB cofactor gene, Bcl3, was found to be a principal transcriptional target of STAT3. This factor plays a role in altering the transcriptional capacity of specific NF-κB subunits and has previously been described as an oncogene in B-cell lymphomas. In this study we set out to establish whether Bcl3 had a role in regulating the cell fate of mammary epithelial cells either in the normal mammary gland or in mammary/breast cancer. Methods Archived material representing a range of tumour grades and types was collected from breast cancer patients immediately after surgery (tumour tissues = 122, normal tissues = 32). The median follow-up of the patients was 120 months (range 12 to 156 months). QRT-PCR for Bcl3 was performed and this information was used to determine statistically significant correlations with the clinical data on breast pathology. MCF7, T47D and MDA-MB231 human breast cancer cell lines were subjected to Bcl3-specific siRNA knockdown and subsequently assessed for cell motility characteristics using ECIS technology. Bcl3-knockout mice were assessed histologically for alterations in apoptosis rate during the adult pregnancy cycle. Western blots, quantitative PCR and DNA binding assays were used to determine the activity of molecular markers of apoptosis in these animals. Bcl3-deficient animals were crossed with mmtv-neu (c-erbB2) mice to establish the role of Bcl3 in primary (neu-dependent) mammary tumour growth, and magnetic resonance imaging was performed on tumour-bearing animals, to establish metastasis rates in the presence/absence of Bcl3. Results An analysis of 122 human breast cancer tissues showed that Bcl3 gene expression was suppressed in a significant proportion of invasive tumours, which correlated with poor prognosis. This also correlated with a significant decrease in Bcl3 gene expression in human breast cancer cell lines exhibiting increased motility characteristics. The effects of siRNA-mediated knockdown of Bcl3 are ongoing. In the mouse mammary gland, Bcl3 expression was restricted to epithelial cells during the first 24 hours of involution. Bcl3 deficiency resulted in a transient delay in the appearance of apoptotic bodies in the early involuting mammary gland in Bcl3-/- mice, while pSTAT3 levels were unchanged compared with equivalent timepoints in control animals. The activities of initiator/executor caspases of both intrinsic and extrinsic pathways were significantly decreased in Bcl3-/- tissues at this time, which correlated with decreases in the expression of key regulators of intrinsic/extrinsic apoptosis. Results from the ongoing magnetic resonance imaging study of tumour incidence/progression in mmtv-neu/Bcl3-/- mice will be presented. Conclusion These observations suggest that Bcl3 promotes apoptosis in the mammary gland and provides preliminary evidence of cross-talk between STAT3 and NF-κB pathways, both of which have been implicated in breast cancer. Our current data on Bcl3 in primary breast tumours and breast cancer cell lines contrasts with other studies, to suggest that Bcl3 suppresses the metastatic progression of primary breast cancer and has a neutral role in breast cancer incidence or primary tumour growth

    Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer

    Get PDF
    BACKGOUND: Angiomotin is a newly discovered molecule that regulates the migration and tubule formation of endothelial cells. It therefore has been implicated in the control of angiogenesis under physiological and pathological conditions. This study examined the expression of angiomotin and its analogues, angiomotin-like 1 (L1) and -like 2 (L2) in breast tumour tissues, and analysed their correlation with angiogenesis and clinical outcomes. METHODS: Human breast tissues (normal n = 32 and tumours n = 120) were used. The levels of expression of angiomotin, L1 and L2 were determined using reverse transcription PCR. Microvessels were stained using antibodies against PECAM, von Willebrand factor (factor 8, or vWF) and VE-cadherin. The transcript levels of angiomotin and its analogues were assessed against the clinical and pathological background, including long term survival (120 months). RESULTS: Breast cancer tissues expressed significantly higher levels of angiomotin transcript, compared with normal mammary tissues (33.1 ± 11 in normal versus 86.5 ± 13.7 in tumour tissues, p = 0.003). Both L1 and L2 were seen at marginally higher levels in tumour than normal tissues but the difference was not statistically significant. Levels of angiomotin were at significantly higher levels in grade 2 and grade 3 tumours compared with grade 1 (p < 0.01 and p = 0.05 respectively). The levels of angiomotin in tumours from patients who had metastatic disease were also significantly higher than those patients who remained disease free (p = 0.03). Multivariate analysis indicated that angiomotin transcript was an independent prognostic factor (p = 0.031). No significant correlations were seen between angiomotin-L1 and L2 with the clinical outcome. Furthermore, high levels of angiomotin transcript were associated with shorter overall survival (p < 0.05). There was a high degree of correlation between levels of vW factor and that of angiomotin (p < 0.05), but not angiomotin-L1 and angiomotin-L2. CONCLUSION: Angiomotin, a putative endothelial motility factor, is highly expressed in human breast tumour tissues and linked to angiogenesis. It links to the aggressive nature of breast tumours and the long term survival of the patients. These data point angiomotin as being a potential therapeutic target

    Tumour suppressor function of MDA-7/IL-24 in human breast cancer

    Get PDF
    Introduction Melanoma differentiation associated gene-7 (MDA-7), also known as interleukin (IL)-24, is a tumour suppressor gene associated with differentiation, growth and apoptosis. However, the mechanisms underlying its anti-neoplastic activity, tumour-specificity and efficacy across a spectrum of human cancers have yet to be fully elucidated. In this study, the biological impact of MDA-7 on the behavior of breast cancer (BC) cells is evaluated. Furthermore, mRNA expression of MDA-7 is assessed in a cohort of women with BC and correlated with established pathological parameters and clinical outcome. Methods The human BC cell line MDA MB-231 was used to evaluate the in-vitro impact of recombinant human (rh)-MDA-7 on cell growth and motility, using a growth assay, wounding assay and electric cell impedance sensing (ECIS). Localisation of MDA-7 in mammary tissues was assessed with standard immuno-histochemical methodology. BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, MDA-7 transcript levels were determined using real-time quantitative PCR. Transcript levels were analyzed against tumour size, grade, oestrogen receptor (ER) status, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period. Results Exposure to rh-MDA-7 significantly reduced wound closure rates for human BC cells in-vitro. The ECIS model demonstrated a significantly reduced motility and migration following rh-MDA-7 treatment (p = 0.024). Exposure to rh-MDA-7 was only found to exert a marginal effect on growth. Immuno-histochemical staining of human breast tissues revealed substantially greater MDA-7 positivity in normal compared to cancer cells. Significantly lower MDA-7 transcript levels were identified in those predicted to have a poorer prognosis by the NPI (p = 0.049) and those with node positive tumours. Significantly lower expression was also noted in tumours from patients who died of BC compared to those who remained disease free (p = 0.035). Low levels of MDA-7 were significantly correlated with a shorter disease free survival (mean = 121.7 vs. 140.4 months, p = 0.0287) on Kaplan-Meier survival analysis. Conclusion MDA-7 significantly inhibits the motility and migration of human BC cells in-vitro. MDA-7 expression is substantially reduced in malignant breast tissue and low transcript levels are significantly associated with unfavourable pathological parameters, including nodal positivity; and adverse clinical outcomes including poor prognosis and shorter disease free survival. MDA-7 offers utility as a prognostic marker and potential for future therapeutic strategies

    YangZheng XiaoJi exerts anti-tumour growth effects by antagonising the effects of HGF and its receptor, cMET, in human lung cancer cells

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) is a cytokine that has a profound effect on cancer cells by stimulating migration and invasion and acting as an angiogenic factor. In lung cancer, the factor also plays a pivotal role and is linked to a poor outcome in patients. In particular, HGF is known to work in combination with EGF on lung cancer cells. In the present study, we investigated the effect of a traditional Chinese medicine reported in cancer therapies, namely YangZheng XiaoJi (YZXJ) on lung cancer and on HGF mediated migration and invasion of lung cancer cells. METHODS: Human lung cancer cells, SKMES1 and A549 were used in the study. An extract from the medicine was used. Cell migration was investigated using the EVOS and by ECIS. Cell–matrix adhesion and in vitro invasion were assessed. In vivo growth of lung cancer was tested using an in vivo xenograft tumour model and activation of the HGF receptor in lung tumours by an immunofluorescence method. RESULTS: Both lung cancer cells increased their migration in response to HGF and responded to YZXJ by reducing their speed of migration. YZXJ markedly reduced the migration and in vitro invasiveness induced by HGF. It worked synergistically with PHA665752 and SU11274, HGF receptor inhibitors on the lung cancer cells both on HGF receptor activation and on cell functions. A combination of HGF and EGF resulted in a greater increase in cell migration, which was similarly inhibited by YZXJ, and in combination with the HGF receptor and EGF receptor inhibitors. In vivo, YZXJ reduced the rate of tumour growth and potentiated the effects of PHA665752 on tumour growth. It was further revealed that YZXJ significantly reduced the degree of phosphorylation of the HGF receptor in lung tumours. CONCLUSION: YZXJ has a significant role in reducing the migration, invasion and in vivo tumour growth of lung cancer and acts to inhibit the migratory and invasive effects induced by HGF and indeed by HGF/EGF. This effect is likely attributed to the inhibition of the HGF receptor activation. These results indicate that YZXJ has a therapeutic role in lung cancer and that combined strategy with methods to block HGF and EGF should be considered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0639-1) contains supplementary material, which is available to authorized users

    Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator

    Get PDF
    INTRODUCTION: Activated leukocyte cell adhesion molecule (ALCAM) (CD166) is an immunoglobulin molecule that has been implicated in cell migration. The present study examined the expression of ALCAM in human breast cancer and assessed its prognostic value. METHODS: The immunohistochemical distribution and location of ALCAM was assessed in normal breast tissue and carcinoma. The levels of ALCAM transcripts in frozen tissue (normal breast, n = 32; breast cancer, n = 120) were determined using real-time quantitative PCR. The results were then analyzed in relation to clinical data including the tumor type, the grade, the nodal involvement, distant metastases, the tumor, node, metastasis (TNM) stage, the Nottingham Prognostic Index (NPI), and survival over a 6-year follow-up period. RESULTS: Immunohistochemical staining on tissue sections in ducts/acini in normal breast and in breast carcinoma was ALCAM-positive. Differences in the number of ALCAM transcripts were found in different types of breast cancer. The level of ALCAM transcripts was lower (P = 0.05) in tumors from patients who had metastases to regional lymph nodes compared with those patients without, in higher grade tumors compared with Grade 1 tumors (P < 0.01), and in TNM Stage 3 tumors compared with TNM Stage 1 tumors (P < 0.01). Tumors from patients with poor prognosis (with NPI > 5.4) had significantly lower levels (P = 0.014) of ALCAM transcripts compared with patients with good prognosis (with NPI < 3.4), and tumors from patients with local recurrence had significantly lower levels than those patients without local recurrence or metastases (P = 0.04). Notably, tumors from patients who died of breast cancer had significantly lower levels of ALCAM transcripts (P = 0.0041) than those with primary tumors but no metastatic disease or local recurrence. Patients with low levels of ALCAM transcripts had significantly (P = 0.009) more incidents (metastasis, recurrence, death) compared with patients with primary breast tumors with high levels of ALCAM transcripts. CONCLUSIONS: In the present panel of breast cancer specimens, decreased levels of ALCAM correlated with the nodal involvement, the grade, the TNM stage, the NPI, and the clinical outcome (local recurrence and death). The data suggest that decreased ALCAM expression is of clinical significance in breast cancer, and that reduced expression indicates a more aggressive phenotype and poor prognosis

    Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer

    Get PDF
    Background Suppressors of cytokine signaling (SOCS) are important negative feedback regulators of the JAK/STAT signaling pathway, and have been recently investigated for their role in the development of different cancers. In this study, we examined the expression of SOCS1-7 genes in normal and breast cancer tissue and correlated this with several clinico-pathological and prognostic factors. Methods SOCS1-7 mRNA extraction and reverse transcription were performed on fresh frozen breast cancer tissue samples (n = 127) and normal background breast tissue (n = 31). Transcript levels of expression were determined using real-time PCR and analyzed against TNM stage, tumour grade and clinical outcome over a 10 year follow-up period. Results SOCS1,4,5,6 and 7 expression decreased with increased TNM stage (TNM1 vs. TNM3 p = 0.039, TNM1 vs. TNM4 p = 0.016, TNM2 vs. TNM4 p = 0.025, TNM1 vs. TNM3 p = 0.012, and TNM1 vs. TNM3 p = 0.044 respectively). SOCS2 and 3 expression decreased with increased Nottingham Prognostic Index (NPI) (NPI1 vs. NPI3 p = 0.033, and NPI2 vs. NPI3 p = 0.041 respectively). SOCS7 expression decreased with higher tumour grade (Grade 3 vs. Grade 2 p = 0.037). After a median follow up period of 10 years, we found higher levels of SOCS1,2 and 7 expression among those patients who remained disease-free compared to those who developed local recurrence (p = 0.0073, p = 0.021, and p = 0.039 respectively). Similarly, we found higher levels of SOCS 2,4, and 7 expression in those who remained disease-free compared to those who developed distant recurrence (p = 0.022, p = 0.024, and p = 0.033 respectively). Patients who remained disease-free had higher levels of SOCS1 and 2 expression compared to those who died from breast cancer (p = 0.02 and p = 0.033 respectively). The disease free survival (DFS) and overall survival (OS) curves showed that higher levels of SOCS1, 3 and 7 were significant predictors of higher DFS (p = 0.015, p = 0.024 and 0.03 respectively) and OS (p = 0.005, p = 0.013 and p = 0.035 respectively). Higher levels of SOCS 4 were significant in predicting better OS (p = 0.007) but not DFS. Immunohistochemical staining of representative samples showed a correlation between SOCS1, 3, 7 protein staining and the SOCS1, 3, 7 mRNA expression. Conclusion Higher mRNA expression levels of SOCS1, 3, 4 and 7 are significantly associated with earlier tumour stage and better clinical outcome in human breast cancer

    Mechanistic insights of epithelial protein lost in neoplasm in prostate cancer metastasis

    Get PDF
    EPLIN is frequently downregulated or lost in various cancers. The purpose of this study was to evaluate the importance of EPLIN in prostate cancer progression, with particular focus on the mechanistic implications to elucidate EPLIN's tumour suppressive function in cancer. EPLIN expression was evaluated in prostate cancer cell lines and tissues. PC‐3 and LNCaP EPLINα overexpression models were generated through transfection with EPLINα sequence and EPLIN knockdown was achieved using shRNA in CA‐HPV‐10 cells. Functional assays were performed to evaluate cellular characteristics and potential mechanisms were evaluated using a protein microarray, and validated using western blot analysis. EPLIN expression was reduced in clinical prostate cancer sections, including hyperplasia (p≤0.001) and adenocarcinoma (p=0.005), when compared to normal prostate tissue. EPLINα overexpression reduced cell growth, migration and invasion, and influenced transcript, protein and phosphoprotein expression of paxillin, FAK and Src. EPLIN knockdown increased the invasive and migratory nature of CA‐HPV‐10 cells and also induced changes to FAK and Src total and/or phospho expression. Functional characterisation of cellular migration and invasion in addition to FAK and Src inhibition demonstrated differential effects between control and EPLINα overexpression and EPLIN knockdown cell lines. This study highlights that EPLIN expression in prostate cancer is able to influence several aspects of cancer cell characteristics, including cell growth, migration and invasion. The mechanism of the tumour suppressive action of EPLIN remains to be fully elucidated; and this study proposes a role for EPLIN's ability to regulate the aggressive characteristics of prostate cancer cells partially through regulating FAK/Src signalling
    corecore