896 research outputs found
Teasing Apart the Impact of Illness and IQ on Functional Neuroimaging Findings in Schizophrenia
Schizophrenia is a major psychiatric disorder associated with cognitive impairment. Functional brain imaging (fMRI) studies of schizophrenia patients reveal a complex pattern of brain differences in the prefrontal cortex. Both decreased (hypofrontality) and increased (hyperfrontality) activity have been reported in patients – inconsistencies that this paper argues could be explained by differences in IQ between patients and healthy controls. This study demonstrates a novel method to tease apart IQ and schizophrenia effects on brain activity. Twelve schizophrenia patients were matched to twelve healthy controls matched to patients’ estimated (premorbid) IQ before their illness, and twelve healthy controls matched to patients’ measured current IQ. All participants performed an executive function event-related fMRI task. Schizophrenia patients’ mean behavioral scores fell numerically between those of both control groups, and did not differ significantly from either group. Two distinct patterns of brain activity were found that were consistent with an effect due to either IQ impairment or schizophrenia diagnosis. Schizophrenia patients’ relatively reduced activity in middle/superior frontal (BA6/BA8) regions was related to their schizophrenia diagnosis, whereas their relatively increased activity in inferior frontal (BA44/45) and left middle frontal (BA8/9) regionsrelated instead to their current IQ impairment. These findings indicate that some fMRI differences reported in schizophrenia patients are artefacts of IQ matching. After removing the IQ confounds, schizophrenia was associated with lateral frontal hypoactivations and medial frontal failure of deactivation. This paper proposes a method to address IQ matching-related issues when studying populations where their illness involves cognitive deterioration
Rationales, design and recruitment of the Taizhou Longitudinal Study
<p/> <p>Background</p> <p>Rapid economic growth in China in the past decades has been accompanied by dramatic changes in lifestyle and environmental exposures. The burdens of non-communicable diseases, such as cardiovascular diseases, diabetes and cancer, have also increased substantially.</p> <p>Methods/design</p> <p>We initiated a large prospective cohort–the Taizhou Longitudinal Study–in Taizhou (a medium-size city in China) to explore the environmental and genetic risk factors for common non-communicable diseases. The sample size of the cohort will be at least 100,000 adults aged 30–80 years drawn from the general residents of the districts of Hailin, Gaogang, and Taixing (sample frame, 1.8 million) of Taizhou. A three-stage stratified sampling method will be applied. Baseline investigations include interviewer-administered questionnaire, anthropometric measurements, and collection of buccal mucosal cells and blood specimens. DNA will be extracted for genetic studies and serum samples will be used for biochemical examinations. A follow-up survey will be conducted every three years to obtain information on disease occurrence and information on selected lifestyle exposures. Study participants will be followed-up indefinitely by using a chronic disease register system for morbidity and cause-specific mortality. Information on non-fatal events will be obtained for certain major categories of disease (e.g., cancer, stroke, myocardial infarction) through established registry systems.</p> <p>Discussion</p> <p>The Taizhou Longitudinal Study will provide a good basis for exploring the roles of many important environmental factors (especially those concomitant with the economic transformation in China) for common chronic diseases, solely or via interaction with genetic factors.</p
TLR1/2, TLR7, and TLR9 Signals Directly Activate Human Peripheral Blood Naive and Memory B Cell Subsets to Produce Cytokines, Chemokines, and Hematopoietic Growth Factors
Recently, it has been reported that using multiple signals, murine and human B cells secrete several cytokines with pro-inflammatory and immunoregulatory properties. We present the first comprehensive analysis of 24 cytokines, chemokines, and hematopoietic growth factors production by purified human peripheral blood B cells (CD19+), and naive (CD19+CD27-) and memory (CD19+CD27+) B cells in response to direct and exclusive signaling provided by toll-like receptor (TLR) ligands Pam3CSK (TLR1/TLR2), Imiquimod (TLR7), and GpG-ODN2006 (TLR9). All three TLR ligands stimulated B cells (CD19+) to produce cytokines IL-1α, IL-1β, IL-6, TNF-α, IL-13, and IL-10, and chemokines MIP-1α, MIP-1β, MCP-1, IP-10, and IL-8. However, GM-CSF and G-CSF production was predominantly induced by TLR2 agonist. Most cytokines/chemokines/hematopoietic growth factors were predominantly or exclusively produced by memory B cells, and in general, TLR2 signal was more powerful than signal provided viaTLR7 and TLR9. No significant secretion of eotaxin, IFN-α, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-7, IL-15, IL-17, IL-12p40, IL-12p70, and TNF-β (lymphotoxin) was observed. These data demonstrate that human B cells can be directly activated viaTLR1/TLR2, TLR7, and TLR9 to induce secretion of cytokines, chemokines, and hematopoietic growth factors and suggest a role of B cells in immune response against microbial pathogenesis and immune homeostasis
Genetic polymorphisms of MDM2 and TP53 genes are associated with risk of nasopharyngeal carcinoma in a Chinese population
<p>Abstract</p> <p>Background</p> <p>The tumor suppressor TP53 and its negative regulator MDM2 play crucial roles in carcinogenesis. Previous case-control studies also revealed <it>TP53 </it>72Arg>Pro and <it>MDM2 </it>309T>G polymorphisms contribute to the risk of common cancers. However, the relationship between these two functional polymorphisms and nasopharyngeal carcinoma (NPC) susceptibility has not been explored.</p> <p>Methods</p> <p>In this study, we performed a case-control study between 522 NPC patients and 722 healthy controls in a Chinese population by using PCR-RFLP.</p> <p>Results</p> <p>We found an increased NPC risk associated with the <it>MDM2 </it>GG (odds ratio [OR] = 2.83, 95% confidence interval [CI] = 2.08-3.96) and TG (OR = 1.49, 95% CI = 1.16-2.06) genotypes. An increased risk was also associated with the <it>TP53 </it>Pro/Pro genotype (OR = 2.22, 95% CI = 1.58-3.10) compared to the Arg/Arg genotype. The gene-gene interaction of <it>MDM2 </it>and <it>TP53 </it>polymorphisms increased adult NPC risk in a more than multiplicative manner (OR for the presence of both <it>MDM2 </it>GG and <it>TP53 </it>Pro/Pro genotypes = 7.75, 95% CI = 3.53-17.58).</p> <p>Conclusion</p> <p>The findings suggest that polymorphisms of <it>MDM2 </it>and <it>TP53 </it>genes may be genetic modifier for developing NPC.</p
Functional Cohesion of Gene Sets Determined by Latent Semantic Indexing of PubMed Abstracts
High-throughput genomic technologies enable researchers to identify genes that are co-regulated with respect to specific experimental conditions. Numerous statistical approaches have been developed to identify differentially expressed genes. Because each approach can produce distinct gene sets, it is difficult for biologists to determine which statistical approach yields biologically relevant gene sets and is appropriate for their study. To address this issue, we implemented Latent Semantic Indexing (LSI) to determine the functional coherence of gene sets. An LSI model was built using over 1 million Medline abstracts for over 20,000 mouse and human genes annotated in Entrez Gene. The gene-to-gene LSI-derived similarities were used to calculate a literature cohesion p-value (LPv) for a given gene set using a Fisher's exact test. We tested this method against genes in more than 6,000 functional pathways annotated in Gene Ontology (GO) and found that approximately 75% of gene sets in GO biological process category and 90% of the gene sets in GO molecular function and cellular component categories were functionally cohesive (LPv<0.05). These results indicate that the LPv methodology is both robust and accurate. Application of this method to previously published microarray datasets demonstrated that LPv can be helpful in selecting the appropriate feature extraction methods. To enable real-time calculation of LPv for mouse or human gene sets, we developed a web tool called Gene-set Cohesion Analysis Tool (GCAT). GCAT can complement other gene set enrichment approaches by determining the overall functional cohesion of data sets, taking into account both explicit and implicit gene interactions reported in the biomedical literature
Loss of PTEN function may account for reduced proliferation pathway sensitivity to LY294002 in human prostate and bladder cancer cells.
PURPOSE: Inhibition of phosphoinositide 3 (PI3)-kinase pathway is attractive for cancer treatment. To examine the role of the phosphatase and tensin homolog (PTEN) in the development of resistance to the treatment. METHODS: We cultured human prostate cancer cells (DU145 and PC-3 cells) and bladder cancer cells (EJ-1 and UM-UC-3 cells) with a PI3-kinase inhibitor, LY294002 for more than 6 weeks and cell proliferation was studied. Activation of Akt1 and ERK was examined by immunoblotting. We introduced the wild type PTEN in UM-UC-3 cells and their proliferation along with the signaling pathways was also examined. RESULTS: After 6 weeks, proliferation pathway sensitivity to LY294002 was reduced in cells expressing PTEN, but not in PTEN-null cells. PD98059, a MAPK/ERK kinase inhibitor, significantly inhibited proliferation of PTEN-expressing cells, but not PTEN-null cells. Stable PTEN expression in PTEN-null UM-UC-3 cells increased serum-induced ERK activation and sensitivity to PD98059-treatment, and reduced sensitivity to LY294002 after 6 weeks of exposure. CONCLUSIONS: Loss of PTEN function may protect against resistance to PI3-kinase inhibitors through an addiction to the PI3-kinase/Akt pathway
Hsc70 Focus Formation at the Periphery of HSV-1 Transcription Sites Requires ICP27
The cellular chaperone protein Hsc70, along with components of the 26S proteasome and ubiquitin-conjugated proteins have been shown to be sequestered in discrete foci in the nuclei of herpes simplex virus 1 (HSV-1) infected cells. We recently reported that cellular RNA polymerase II (RNAP II) undergoes proteasomal degradation during robust HSV-1 transcription, and that the immediate early protein ICP27 interacts with the C-terminal domain and is involved in the recruitment of RNAP II to viral transcription/replication compartments.Here we show that ICP27 also interacts with Hsc70, and is required for the formation of Hsc70 nuclear foci. During infection with ICP27 mutants that are unable to recruit RNAP II to viral replication sites, viral transcript levels were greatly reduced, viral replication compartments were poorly formed and Hsc70 focus formation was curtailed. Further, a dominant negative Hsc70 mutant that cannot hydrolyze ATP, interfered with RNAP II degradation during HSV-1 infection, and an increase in ubiquitinated forms of RNAP II was observed. There was also a decrease in virus yields, indicating that proteasomal degradation of stalled RNAP II complexes during robust HSV-1 transcription and replication benefits viral gene expression.We propose that one function of the Hsc70 nuclear foci may be to serve to facilitate the process of clearing stalled RNAP II complexes from viral genomes during times of highly active transcription
3066 consecutive Gamma Nails. 12 years experience at a single centre
<p>Abstract</p> <p>Background</p> <p>Fixation of trochanteric hip fractures using the Gamma Nail has been performed since 1988 and is today well established and wide-spread. However, a number of reports have raised serious concerns about the implant's complication rate. The main focus has been the increased risk of a subsequent femoral shaft fracture and some authors have argued against its use despite other obvious advantages, when this implant is employed.</p> <p>Through access to a uniquely large patient data base available, which is available for analysis of trochanteric fractures; we have been able to evaluate the performance of the Gamma Nail over a twelve year period.</p> <p>Methods</p> <p>3066 consecutive patients were treated for trochanteric fractures using Gamma Nails between 1990 and 2002 at the Centre de Traumatologie et de l'Orthopedie (CTO), Strasbourg, France. These patients were retrospectively analysed. Information on epidemiological data, intra- and postoperative complications and patients' outcome was retrieved from patient notes. All available radiographs were assessed by a single reviewer (AJB).</p> <p>Results</p> <p>The results showed a low complication rate with the use of the Gamma Nail. There were 137 (4.5%) intraoperative fracture-related complications. Moreover 189 (6.2%) complications were detected postoperatively and during follow-up. Cut-out of the lag screw from the femoral head was the most frequent mechanical complication (57 patients, 1.85%), whereas a postoperative femoral shaft fracture occurred in 19 patients (0.6%). Other complications, such as infection, delayed healing/non-union, avascular femoral head necrosis and distal locking problems occurred in 113 patients (3.7%).</p> <p>Conclusions</p> <p>The use of the Gamma Nail in trochanteric hip fractures is a safe method with a low complication rate. In particular, a low rate of femoral shaft fractures was reported. The low complication rate reported in this series can probably be explained by strict adherence to a proper surgical technique.</p
Transcriptional interaction-assisted identification of dynamic nucleosome positioning
<p>Abstract</p> <p>Background</p> <p>Nucleosomes regulate DNA accessibility and therefore play a central role in transcription control. Computational methods have been developed to predict static nucleosome positions from DNA sequences, but nucleosomes are dynamic in vivo.</p> <p>Results</p> <p>Motivated by our observation that transcriptional interaction is discriminative information for nucleosome occupancy, we developed a novel computational approach to identify dynamic nucleosome positions at promoters by combining transcriptional interaction and genomic sequence information. Our approach successfully identified experimentally determined nucleosome positioning dynamics available in three cellular conditions, and significantly improved the prediction accuracy which is based on sequence information alone. We then applied our approach to various cellular conditions and established a comprehensive landscape of dynamic nucleosome positioning in yeast.</p> <p>Conclusion</p> <p>Analysis of this landscape revealed that the majority of nucleosome positions are maintained during most conditions. However, nucleosome occupancy at most promoters fluctuates with the corresponding gene expression level and is reduced specifically at the phase of peak expression. Further investigation into properties of nucleosome occupancy identified two gene groups associated with distinct modes of nucleosome modulation. Our results suggest that both the intrinsic sequence and regulatory proteins modulate nucleosomes in an altered manner.</p
- …