1,836 research outputs found

    Asymmetric Deep Supervised Hashing

    Full text link
    Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and database (retrieval) points. The training of these symmetric deep supervised hashing methods is typically time-consuming, which makes them hard to effectively utilize the supervised information for cases with large-scale database. In this paper, we propose a novel deep supervised hashing method, called asymmetric deep supervised hashing (ADSH), for large-scale nearest neighbor search. ADSH treats the query points and database points in an asymmetric way. More specifically, ADSH learns a deep hash function only for query points, while the hash codes for database points are directly learned. The training of ADSH is much more efficient than that of traditional symmetric deep supervised hashing methods. Experiments show that ADSH can achieve state-of-the-art performance in real applications

    Discovery and Identification of W' and Z' in SU(2) x SU(2) x U(1) Models at the LHC

    Full text link
    We explore the discovery potential of W' and Z' boson searches for various SU(2) x SU(2) x U(1) models at the Large Hadron Collider (LHC), after taking into account the constraints from low energy precision measurements and direct searches at both the Tevatron (1.96 TeV) and the LHC (7 TeV). In such models, the W' and Z' bosons emerge after the electroweak symmetry is spontaneously broken. Two patterns of the symmetry breaking are considered in this work: one is SU(2)_L x SU(2)_2 x U(1)_X to SU(2)_L x U(1)_Y (BP-I), another is SU(2)_1 x SU(2)_2 x U(1)_Y to SU(2)_L x U(1)_Y (BP-II). Examining the single production channel of W' and Z' with their subsequent leptonic decays, we find that the probability of detecting W' and Z' bosons in the considered models at the LHC (with 14 TeV) is highly limited by the low energy precision data constraints. We show that observing Z' alone, without seeing a W', does not rule out new physics models with non-Abelian gauge extension, such as the phobic models in BP-I. Models in BP-II would predict the discovery of degenerate W' and Z' bosons at the LHC.Comment: 29 pages, including 11 figures, 3 tables, added references for introductio

    Modeling of the Partial Discharge Process in a Liquid Dielectric: Effect of Applied Voltage, Gap Distance, and Electrode Type

    Full text link
    The partial discharge (PD) process in liquid dielectrics is influenced by several factors. Although the PD current contains the information representing the discharge process during the PD event, it is difficult to determine the detailed dynamics of what is happening in the bulk of the liquid. In this paper, a microscopic model describing the dynamics of the charge carriers is implemented. The model consists of drift-diffusion equations of electrons, positive and negative ions coupled with Poisson’s equation. The stochastic feature of PD events is included in the equation. First the model is validated through comparison between the calculated PD current and experimental data. Then experiments are conducted to study the effects of the amplitude of the applied voltage, gap distance and electrode type on the PD process. The PD currents under each condition are recorded. Simulations based on the model have been conducted to analyze the dynamics of the PD events under each condition, and thus explain the mechanism of how these factors influence the PD events. The space charge generated in the PD process is revealed as the main reason affecting the microscopic process of the PD events

    Long-Term Effects of Axotomy on β-Tubulin and NF Gene Expression in Rat DRG Neurons

    Get PDF
    To compare the long-term recovery of gene expression in dorsal root ganglion (DRG) neurons under conditions of regeneration vs. non-regeneration, Northern blotting and in situ hybridization were used to assess steady-state neurofilament (NF) and beta tubulin mRNA levels 12 weeks following axonal injury. Adult male rats sustained either a crush lesion of the mid-sciatic nerve (regeneration occurs), or a cut lesion of the sciatic nerve combined with ligation of the proximal nerve stump and removal of a large segment of the distal nerve (regeneration does not occur). In the latter case, neuroma formation physically prevented axonal regeneration. Results of Northern blotting of total RNA obtained from the DRG indicated that NF-L and NF-Μ mRNA levels had largely returned to control levels at 12 weeks following crush axotomy but were still substantially depressed following cut/ligation injury of the sciatic nerve at that time. in situ hybridization studies indicated that both crush and cut/ligation axotomy resulted in significantly lower NF-L mRNA levels in large-sized (>1000 μm2) DRG neurons at 12 weeks post-axotomy. Discrepancies in the conclusions from Northern blotting and in situ hybridization experiments were also noted in the case of tubulin mRNA changes at long intervals after axotomy. in situ hybridization data derived from the large-sized DRG neurons using a coding region β-tubulin cDNA (which recognizes both βII and βIII mRNAs) showed complete recovery of β-tubulin mRNA levels in surviving, large-sized DRG neurons after crush axotomy, but significantly elevated tubulin mRNA levels in surviving large DRG cells at 12 weeks after cut/ligation axotomy. In contrast, Northern blotting results indicated that βII-tubulin mRNA levels in the crush axotomy condition remained elevated relative to control while they were substantially lower than control in cut/ligation axotomy samples. Results from analysis of βIII-tubulin mRNA changes were not conclusive. The lack of complete correspondence in the results from the two different methods of analysis of mRNA changes (blotting vs. in situ) is likely to be due to selective loss of large-sized DRG neurons in the long-standing cut/ligation injury condition. This would influence results from blotting data, where RNA is derived from the DRG as a whole, more so than in situ hybridization experiments which specifically focus on the surviving largesized neurons. Overall, data from these experiments indicate that altered patterns of gene expression remain in the DRG for long intervals after axonal injury, whether or not axonal regeneration has been successful. However, recovery of “normal8221; patterns of cytoskeletal gene expression in the DRG is considerably more complete after crush injury than after cut/ligation injury

    In vitro and in vivo antitumor properties of 7-epidocetaxel, a major impurity of docetaxel

    Get PDF
    Purpose: To investigate the antitumor properties and toxicity of 7-epi docetaxel (7-epi DTX) as an active pharmaceutical ingredient, and in formulations.Methods: Docetaxel-loaded albumin nanoparticles (DTX NPs) were prepared by freeze-drying, while 7- epi DTX was detected and isolated by high performance liquid chromatography (HPLC). Their antitumor properties were evaluated in vitro in CT26 cells and in vivo in BALB/c sk-ov-3 xenograft nude mice model. The tissues were histological examined.Results: The in vivo antitumor effects of DTX NPs at different doses of 7-epi DTX were similar. Moreover, the in vitro anti-cancer effect of 7-epi DTX was comparable to that of DTX. However, the in vivo antitumor effectiveness of 7-epi DTX was inferior to that of DTX. In toxicity studies, 7-epi DTX did not elicit any acute toxic effects both as active pharmaceutical ingredients, and as a component of formulations.Conclusion: The results indicate that 7-epi DTX does not elicit acute toxic effects both as an active pharmaceutical ingredient and in bulk formulations. The antitumor property of 7-epi DTX is less than that of DTX.Keywords: 7-Epidocetaxel, Impurity, Antitumor properties, Toxicit
    • …
    corecore