125 research outputs found

    Semantic Communications using Foundation Models: Design Approaches and Open Issues

    Full text link
    Foundation models (FMs), including large language models, have become increasingly popular due to their wide-ranging applicability and ability to understand human-like semantics. While previous research has explored the use of FMs in semantic communications to improve semantic extraction and reconstruction, the impact of these models on different system levels, considering computation and memory complexity, requires further analysis. This study focuses on integrating FMs at the effectiveness, semantic, and physical levels, using universal knowledge to profoundly transform system design. Additionally, it examines the use of compact models to balance performance and complexity, comparing three separate approaches that employ FMs. Ultimately, the study highlights unresolved issues in the field that need addressing.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Artificial Intelligence-aided OFDM Receiver: Design and Experimental Results

    Full text link
    Orthogonal frequency division multiplexing (OFDM) is one of the key technologies that are widely applied in current communication systems. Recently, artificial intelligence (AI)-aided OFDM receivers have been brought to the forefront to break the bottleneck of the traditional OFDM systems. In this paper, we investigate two AI-aided OFDM receivers, data-driven fully connected-deep neural network (FC-DNN) receiver and model-driven ComNet receiver, respectively. We first study their performance under different channel models through simulation and then establish a real-time video transmission system using a 5G rapid prototyping (RaPro) system for over-the-air (OTA) test. To address the performance gap between the simulation and the OTA test caused by the discrepancy between the channel model for offline training and real environments, we develop a novel online training strategy, called SwitchNet receiver. The SwitchNet receiver is with a flexible and extendable architecture and can adapts to real channel by training one parameter online. The OTA test verifies its feasibility and robustness to real environments and indicates its potential for future communications systems. At the end of this paper, we discuss some challenges to inspire future research.Comment: 29 pages, 13 figures, submitted to IEEE Journal on Selected Areas in Communication

    Acute osimertinib exposure induces electrocardiac changes by synchronously inhibiting the currents of cardiac ion channels

    Get PDF
    Introduction: As the third generation of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), osimertinib has demonstrated more significant cardiotoxicity than previous generations of EGFR-TKIs. Investigating the mechanism of osimertinib cardiotoxicity can provide a reference for a comprehensive understanding of osimertinib-induced cardiotoxicity and the safety of the usage of this drug in clinical practice.Methods: Multichannel electrical mapping with synchronous ECG recording was used to investigate the effects of varying osimertinib concentrations on electrophysiological indicators in isolated Langendorff-perfused hearts of guinea pigs. Additionally, a whole-cell patch clamp was used to detect the impact of osimertinib on the currents of hERG channels transfected into HEK293 cells and the Nav1.5 channel transfected into Chinese hamster ovary cells and acute isolated ventricular myocytes from SD rats.Results: Acute exposure to varying osimertinib concentrations produced prolongation in the PR interval, QT interval, and QRS complex in isolated hearts of guinea pigs. Meanwhile, this exposure could concentration-dependently increase the conduction time in the left atrium, left ventricle, and atrioventricular without affecting the left ventricle conduction velocity. Osimertinib inhibited the hERG channel in a concentration-dependent manner, with an IC50 of 2.21 ± 1.29 μM. Osimertinib also inhibited the Nav1.5 channel in a concentration-dependent manner, with IC50 values in the absence of inactivation, 20% inactivation, and 50% inactivation of 15.58 ± 0.83 μM, 3.24 ± 0.09 μM, and 2.03 ± 0.57 μM, respectively. Osimertinib slightly inhibited the currents of L-type Ca2+ channels in a concentration-dependent manner in acutely isolated rat ventricular myocytes.Discussion: Osimertinib could prolong the QT interval; PR interval; QRS complex; left atrium, left ventricle, and atrioventricular conduction time in isolated guinea pig hearts. Furthermore, osimertinib could block the hERG, Nav1.5, and L-type Ca2+ channels in concentration-dependent manners. Therefore, these findings might be the leading cause of the cardiotoxicity effects, such as QT prolongation and decreased left ventricular ejection fraction

    Scaling of pressure-induced and doping-induced superconductivity in the Ca10(PtnAs8)(Fe2As2)5 arsenides

    Full text link
    The Ca10(PtnAs8)(Fe2As2)5 (n=3,4) compounds are a new type of iron pnictide superconductor whose structures consist of stacking Ca-PtnAs8-Ca-Fe2As2 layers in a unit cell. When n=3 (the 10-3-8 phase), the undoped compound is an antiferromagnetic (AFM) semiconductor, while, when n=4 (the 10-4-8 phase), the undoped compound is a superconductor (Tc=26K), a difference that has been attributed to the electronic character of the PtnAs8 intermediary layers. Here we report high-pressure studies on 10-3-8 and 10-4-8, using a combination of in-situ resistance, magnetic susceptibility, Hall coefficient and X-ray diffraction measurements. We find that the AFM order in undoped 10-3-8 is suppressed completely at 3.5 GPa and that superconductivity then appears in the 3.5-7 GPa pressure range with a classic dome-like behavior. In contrast, Tc in the 10-4-8 phase displays a monotonic decrease with increasing pressure. Our results allow for the establishment of a unique correspondence between pressure-induced and doping-induced superconductivity in the high-Tc iron pnictides, and also points the way to an effective strategy for finding new high-Tc superconductors.Comment: 25 pages, 5 figure

    The role of 245 phase in alkaline iron selenide superconductors revealed by high pressure studies

    Get PDF
    Here we show that a pressure of about 8 GPa suppresses both the vacancy order and the insulating phase, and a further increase of the pressure to about 18 GPa induces a second transition or crossover. No superconductivity has been found in compressed insulating 245 phase. The metallic phase in the intermediate pressure range has a distinct behavior in the transport property, which is also observed in the superconducting sample. We interpret this intermediate metal as an orbital selective Mott phase (OSMP). Our results suggest that the OSMP provides the physical pathway connecting the insulating and superconducting phases of these iron selenide materials.Comment: 32 pages, 4 figure

    A comprehensive insight into the effects of acidification on varied-sized pores in different rank coals

    Get PDF
    Elucidating the evolution law of coal pore structure under acidification is crucial for guiding the practical application of acidizing technology and improving the production of coalbed methane. To comprehensively investigate the influence of acidification on varied-sized pores in different rank coals, in this study, fat coal, meagre coal and anthracite coal were collected and acidified with a mixed solution composed of hydrochloric acid (9 wt%) and hydrofluoric acid (3 wt%). An approach integrating low-pressure CO2 adsorption (LPGA-CO2), low-temperature N2 adsorption (LTGA-N2) and Mercury intrusion porosimetry (MIP) was adopted to fully characterize the varied-sized pore structure before and after acidification to eliminate the limitations of single method. The results demonstrated that acid treatment improved the pore opening degree and connectivity in coal, but had essentially no effect on the pore shape. After acidification, all the coal samples showed significant increases in the porosity and total pore volume, which was mainly contributed by the numerous newly formed large mesopores and macropores, especially the macropores (with an average contribution rate of 74.59%). Taken as a whole, acid treatment had the largest impact on macropores, followed by mesopores, and the smallest impact on micropores. In addition, the variation trend of total specific surface area (SSA) under acidification was primarily determined by micropores. For the three different rank coals selected in this study, the total SSA of fat coal (PM) was more easily affected by acidification and had the largest percentage increase after acid treatment, followed by anthracite coal (YM), while that of meagre coal (LA) decreased slightly. This difference was driven primarily by the different variation trend of micropore SSA in different rank coals. After acidification, the SSA of ultra-micropores and super-micropores all increased in fat coal (PM) and anthracite coal (YM), whereas for meagre coal (LA), although ultra-micropores SSA increased, super-micropores SSA decreased, which ultimately led to the slight decrease of its micropore SSA. Moreover, the total pore volume increment of coal was closely related to the macropore volume increment under acidification, but not significantly related to the coal maturity,which might indicate that, compared with coal rank, the mineral content in coal might be a more important consideration when measuring the applicability of acidification technology

    Clinical Investigations of CAR-T Cell Therapy for Solid Tumors

    Get PDF
    Cell therapy is a distinguished targeted immunotherapy with great potential to treat solid tumors in the new era of cancer treatment. Cell therapy products include genetically engineered cell products and non-genetically engineered cell products. Several recent cell therapies, especially chimeric antigen receptor (CAR)-T cell therapies, have been approved as novel treatment strategies for cancer. Many clinical trials on cell therapies, in the form of cell therapy alone or in combination with other treatments, in solid tumors, have been conducted or ongoing. However, there are still challenges since adverse events and the limited efficacy of cell therapies have also been observed. Here, we concisely summarize the clinical milestones of the conducted and ongoing clinical trials of cell therapy, introduce the evolution of CARs, discuss the challenges and limitations of these therapeutic modalities taking CAR-T as the main focus, and analyze the disparities in the regulatory policies in different countries
    • …
    corecore