37 research outputs found

    Tropical patterns from the Fock-Goncharov pairing and Ringel's conjectures

    Full text link
    We study tropical friezes and cluster-additive functions associated to symmetrizable generalized Cartan matrices in the framework of Fock-Goncharov duality in cluster algebras. As a special case, we generalize and prove two conjectures of C. M. Ringel on cluster-additive functions for arbitrary Cartan matrices of finite type

    Acteoside From Ligustrum robustum (Roxb.) Blume Ameliorates Lipid Metabolism and Synthesis in a HepG2 Cell Model of Lipid Accumulation

    Get PDF
    We aimed to ascertain the mechanism underlying the effects of acteoside (ACT) from Ligustrum robustum (Roxb.) Blume (Oleaceae) on lipid metabolism and synthesis. ACT, a water-soluble phenylpropanoid glycoside, is the most abundant and major active component of L. robustum; the leaves of L. robustum, known as kudingcha (bitter tea), have long been used in China as an herbal tea for weight loss. Recently, based on previous studies, our team reached a preliminary conclusion that phenylpropanoid glycosides from L. robustum most likely contribute substantially to reducing lipid levels, but the mechanism remains unclear. Here, we conducted an in silico screen of currently known phenylethanoid glycosides from L. robustum and attempted to explore the hypolipidemic mechanism of ACT, the representative component of phenylethanoid glycosides in L. robustum, using RNA-seq technology, quantitative real-time PCR (qPCR) and Western blotting. First, the screening results for six compounds were docked with 15 human protein targets, and 3 of 15 protein targets were related to cardiovascular diseases. Based on previous experimental data and docking results, we selected ACT, which exerted positive effects, for further study. We generated a lipid accumulation model using HepG2 cells treated with a high concentration of oleic acid and then extracted RNA from cells treated for 24 h with 50 μmol/L ACT. Subsequently, we performed a transcriptomic analysis of the RNA-seq results, which revealed a large number of differentially expressed genes. Finally, we randomly selected some genes and proteins for further validation using qPCR and Western blotting; the results agreed with the RNA-seq data and confirmed their reliability. In conclusion, our experiments proved that ACT from L. robustum alters lipid metabolism and synthesis by regulating the expression of multiple genes, including Scarb1, Scarb2, Srebf1, Dhcr7, Acat2, Hmgcr, Fdft1, and Lss, which are involved several pathways, such as the glycolytic, AMPK, and fatty acid degradation pathways

    Metabolomics reveals that vine tea (Ampelopsis grossedentata) prevents high-fat-diet-induced metabolism disorder by improving glucose homeostasis in rats.

    No full text
    Vine tea (VT), derived from Ampelopsis grossedentata (Hand.-Mazz.) W.T. Wang, is an alternative tea that has been consumed widely in south China for hundreds of years. It has been shown that drinking VT on a daily basis improves hyperlipidemia and hyperglycemia. However, little is known about the preventive functions of VT for metabolic dysregulation and the potential pathological mechanisms involved. This paper elucidates the preventive effects of VT on the dysregulation of lipid and glucose metabolism using rats maintained on a high-fat-diet (HFD) in an attempt to explain the potential mechanisms involved.Sprague Dawley (SD) rats were divided into five groups: a group given normal rat chow and water (control group); a group given an HFD and water (HFD group); a group given an HFD and Pioglitazone (PIO group), 5 mg /kg; and groups given an HFD and one of two doses of VT: 500 mg/L or 2000 mg/L. After 8 weeks, changes in food intake, tea consumption, body weight, serum and hepatic biochemical parameters were determined. Moreover, liver samples were isolated for pathology histology and liquid chromatography-mass spectrometry (LC-MS)-based metabolomic research.VT reduced the serum levels of glucose and total cholesterol, decreased glucose area under the curve in the insulin tolerance test and visibly impaired hepatic lipid accumulation. Metabolomics showed that VT treatment modulated the contents of metabolic intermediates linked to glucose metabolism (including gluconeogenesis and glycolysis), the TCA cycle, purine metabolism and amino acid metabolism.The current results demonstrate that VT may prevent metabolic impairments induced by the consumption of an HFD. These effects may be caused by improved energy-related metabolism (including gluconeogenesis, glycolysis and TCA cycle), purine metabolism and amino acid metabolism, and reduced lipid levels in the HFD-fed rats

    Aqueous Extract of Black Maca Prevents Metabolism Disorder via Regulating the Glycolysis/Gluconeogenesis-TCA Cycle and PPARα Signaling Activation in Golden Hamsters Fed a High-Fat, High-Fructose Diet

    No full text
    Maca (Lepidium meyenii Walpers) has been used as a dietary supplement and ethnomedicine for centuries. Recently, maca has become a high profile functional food worldwide because of its multiple biological activities. This study is the first explorative research to investigate the prevention and amelioration capacity of the aqueous extract of black maca (AEM) on high-fat, high-fructose diet (HFD)-induced metabolism disorder in golden hamsters and to identify the potential mechanisms involved in these effects. For 20 weeks, 6-week-old male golden hamsters were fed the following respective diets: (1) a standard diet, (2) HFD, (3) HFD supplemented with metformin, or (4) HFD supplemented with three doses of AEM (300, 600, or 1,200 mg/kg). After 20 weeks, the golden hamsters that received daily AEM supplementation presented with the beneficial effects of improved hyperlipidemia, hyperinsulinemia, insulin resistance, and hepatic steatosis in vivo. Based on the hepatic metabolomic analysis results, alterations in metabolites associated with pathological changes were examined. A total of 194 identified metabolites were mapped to 46 relative metabolic pathways, including those of energy metabolism. In addition, via in silico profiling for secondary maca metabolites by a joint pharmacophore- and structure-based approach, a compound-target-disease network was established. The results revealed that 32 bioactive compounds in maca targeted 16 proteins involved in metabolism disorder. Considering the combined metabolomics and virtual screening results, we employed quantitative real-time PCR assays to verify the gene expression of key enzymes in the relevant pathways. AEM promoted glycolysis and inhibited gluconeogenesis via regulating the expression of key genes such as Gck and Pfkm. Moreover, AEM upregulated tricarboxylic acid (TCA) cycle flux by changing the concentrations of intermediates and increasing the mRNA levels of Aco2, Fh, and Mdh2. In addition, the lipid-lowering effects of AEM in boththe serum and liver may be partly related to PPARα signaling activation, including enhanced fatty acid β-oxidation and lipogenesis pathway inhibition. Together, our data demonstrated that AEM intervention significantly improved lipid and glucose metabolism disorder by regulating the glycolysis/gluconeogenesis-TCA cycle and by modulating gene expression levels involved in the PPARα signaling pathway
    corecore