44 research outputs found

    Identifying tumor antigens and immune subtypes of gastrointestinal MALT lymphoma for immunotherapy development

    Get PDF
    MALT lymphoma is an extranodal B-cell lymphoma of the marginal zone of mucosa-associated lymphoid tissue (MALT), caused by malignant transformation of B-cells in the marginal zone. In this work, we aim to explore the potential relationship between MALT lymphoma and DLBCL. Vaccines derived from messenger ribonucleic acid (mRNA) may provide satisfactory results. Despite being a promising treatment option, immunotherapy isn’t widely used in treating renal cell carcinoma, as only a few patients respond to the treatment. The Cancer Genome Atlas (TCGA) analysis revealed gene expression profiles and clinical information. Antigen-presenting cells infiltrated the immune system using TIMER tool (http://timer.cistrome.org/). GDSC (Genomics of Drug Sensitivity in Cancer) data were used to estimate drug sensitivity. Immune-related genes were associated with a better prognosis in MALT lymphoma patients and higher levels of antigen-presenting cells. There is a significant relationship between these immune subtypes and immunological checkpoints, immunogenic cell death regulators, and prognostic variables for MALT lymphoma patients. In this study, we provide a theoretical foundation for the development of mRNA vaccines and suggest that KLHL14 could potentially be used as antigens to develop mRNA vaccines for MALT lymphoma

    Enhanced Hygrothermal Stability of In-Situ-Grown MAPbBr<sub>3</sub> Nanocrystals in Polymer with Suppressed Desorption of Ligands

    Get PDF
    Currently, the intrinsic instability of organic-inorganic hybrid perovskite nanocrystals (PNCs) at high temperature and high humidity still stands as a big barrier to hinder their potential applications in optoelectronic devices. Herein, we report the controllable in-situ-grown PNCs in polyvinylidene fluoride (PVDF) polymer with profoundly enhanced hygrothermal stability. It is found that the introduced tetradecylphosphonic acid (TDPA) ligand enables significantly improved binding to the surface of PNCs via a strong covalently coordinated P-O-Pb bond, as evidenced by density functional theory calculations and X-ray photoelectron spectroscopy analyses. Accordingly, such enhanced binding could not only make efficient passivation of the surface defects of PNCs but also enable the remarkably suppressed desorption of the ligand from the PNCs under high-temperature environments. Consequently, the photoluminescence quantum yield (PL QY) of the as-fabricated MAPbBr3-PNCs@PVDF film exhibits almost no decay after exposure to air at 333 K over 1800 h. Once the temperatures are increased from 293 to 353 K, their PL intensity can be kept as 88.6% of the initial value, much higher than that without the TDPA ligand (i.e., 42.4%). Moreover, their PL QY can be maintained above 50% over 1560 h (65 days) under harsh working conditions of 333 K and 90% humidity. As a proof of concept, the as-assembled white light-emitting diodes display a large color gamut of 125% National Television System Committee standard, suggesting their promising applications in backlight devices.</p

    The Chemical Composition and Nitrogen Distribution of Chinese Yak (Maiwa) Milk

    Get PDF
    The paper surveyed the chemical composition and nitrogen distribution of Maiwa yak milk, and compared the results with reference composition of cow milk. Compared to cow milk, yak milk was richer in protein (especially whey protein), essential amino acids, fat, lactose and minerals (except phosphorus). The contents of some nutrients (total protein, lactose, essential amino acids and casein) were higher in the warm season than in the cold season. Higher ratios of total essential amino acids/total amino acids (TEAA/TAA) and total essential amino acids/total non essential amino acids (TEAA/TNEAA) were found in the yak milk from the warm season. However its annual average ratio of EAA/TAA and that of EAA/NEAA were similar to those of cow milk. Yak milk was rich in calcium and iron (p < 0.05), and thus may serve as a nutritional ingredient with a potential application in industrial processing

    Glioma Stem Cells-Derived Exosomes Promote the Angiogenic Ability of Endothelial Cells Through miR-21/VEGF Signal

    Get PDF
    Glioma stem cells (GSCs) play an important role in glioblastoma prognosis. Exosomes (EXs) mediate cell communication by delivering microRNAs (miRs). Glioblastoma has a high level of miR-21 which could upregulate vascular endothelial growth factor (VEGF) expression. We hypothesized GSC-EXs can promote the angiogenic ability of endothelial cells (ECs) through miR-21/VEGF signal. GSCs were isolated from U-251 cells with stem cell marker CD133. GSCs transfected without or with scramble or miR-21 mimics were used to produce GSC-EXscon, GSC-EXssc and GSC-EXsmiR-21. Human brain ECs were co-cultured with vehicle, GSC-EXscon, GSC-EXssc or GSC-EXsmiR-21 plus VEGF siRNAs (siRNAVEGF). After 24 hours, the angiogenic abilities of ECs were evaluated. The levels of miR-21, VEGF and p-Flk1/VEGFR2 were determined. Results showed: 1) Over 90% of purified GSCs expressed CD133; 2) The levels of miR-21 and VEGF in GSCs and GSC-EXs were up-regulated by miR-21 mimic transfection; 3) Compared to GSC-EXscon or GSC-EXssc, GSC-EXsmiR-21 were more effective in elevating the levels of miR-21 and VEGF, and the ratio of p-Flk1/VEGFR2 in ECs; 4) GSC-EXsmiR-21 were more effective in promoting the angiogenic ability of ECs than GSC-EXscon or GSC-EXssc, which were remarkably reduced by siRNAVEGF pretreatment. In conclusion, GSC-EXs can promote the angiogenic ability of ECs by stimulating miR-21/VEGF/VEGFR2 signal pathway

    Isolation and characterization of melanin from palm fiber

    No full text
    Melanin pigments derived from palm fiber were isolated via acid/ethanol extraction, acid hydrolysis, organic solvent (e.g., ethanol, ethyl acetate, and acetone) treatment, and repeated precipitation. Ultraviolet-visible and infrared spectra analyses showed that the melanin pigments derived from palm fiber were similar to typical melanin. The stability of palm fiber pigments in oxidants, reducing agents, metal ions, temperature, and light was investigated. Results revealed that the stability of palm fiber pigments was good in the oxidant, hydrogen peroxide, but relatively poor in the reducing agent, sodium sulfite. The derived melanin pigments were significantly affected by Fe3+, Al3+, Cu2+, and Zn2+, but only slightly affected by Na+, Mg2+, and Ca2+. In addition, palm fiber pigments exhibited poor thermal endurance at high temperatures and under room lighting. A study on antioxidant activity showed that palm fiber pigments exhibited strong scavenging capability against free radicals. Moreover, its removal capability was enhanced by increasing pigments concentration. Its scavenging capability was arranged from weak to strong as follows: 1,1-diphenyl-2-picrylhydrazyl• < O2−{{\rm{O}}_2}^ - • < •OH

    Impact of selected non-steroidal anti-inflammatory pharmaceuticals on microbial community assembly and activity in sequencing batch reactors.

    No full text
    This study covers three widely detected non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), diclofenac (DCF), ibuprofen (IBP) and naproxen (NPX), as NSAIDs pollutants. The objective is to evaluate the impact of NSAIDs at their environmental concentrations on microbial community assembly and activity. The exposure experiments were conducted under three conditions (5 μg L-1 DCF, 5 μg L-1 DCF+5 μg L-1 IBP and 5 μg L-1 DCF+5 μg L-1 IBP+ 5 μg L-1 NPX) in sequencing batch reactors (SBRs) for 130 days. Removals of COD and NH4+-N were not affected but total nitrogen (TN) removal decreased. IBP and NPX had the high removal efficiencies (79.96% to 85.64%), whereas DCF was more persistent (57.24% to 64.12%). In addition, the decreased removals of TN remained the same under the three conditions (p > 0.05). The results of oxidizing enzyme activities, live cell percentages and extracellular polymeric substances (EPS) indicated that NSAIDs damaged the cell walls or microorganisms and the mixtures of the three NSAIDs increased the toxicity. The increased Shannon-Wiener diversity index suggested that bacterial diversity was increased with the addition of selected NSAIDs. Bacterial ribosomal RNA small subunit (16S) gene sequencing results indicated that Actinobacteria and Bacteroidetes were enriched, while Micropruina and Nakamurella decreased with the addition of NSAIDs. The enrichment of Actinobacteria and Bacteroidetes indicated that both of them might have the ability to degrade NSAIDs and thereby could adapt well with the presence of NSAIDs

    A Novel Workflow for Early Time Transient Pressure Data Interpretation in Tight Oil Reservoirs with Physical Constraints

    No full text
    In this work, a novel workflow has been proposed, validated and applied to interpret the early time transient pressure data in tight oil reservoirs with physical constraints. More specifically, the theoretical model was developed to obtain the transient pressure response for a vertical well in tight oil reservoirs with consideration of pseudo threshold pressure gradient (TPG). Then, a physical constraint between the skin factor and formation permeability has been proposed based on the physical meaning of percolation theory. This physical constraint can be applied to determine the lower limit of the skin factor which can reduce the uncertainty during the interpretation process. It is found that the influence range of the skin factor and permeability may partially overlap during the interpretation process without consideration of physical constraints. Additionally, it is found that the equivalent wellbore radius is more reasonable by considering the skin factor constraints. Furthermore, the short-time asymptotic method was applied to separate the small pressure signal at the early time period and a novel type curve was proposed to better analyze the early time pressure response. Subsequently, sensitivity analyses were conducted to investigate the influence of different parameters on the new type curves. It is found that the new type curves are more dispersed and sensitive to the parameters at the early time period which can be beneficial for the early time transient pressure analysis in a tight formation. The proposed method has been validated and then extended to a field application, demonstrating that the transient pressure for a vertical well in a tight formation can be analyzed in a reasonable and accurate manner with only early time transient pressure data

    Yb<sup>3+</sup>/Eu<sup>3+</sup>/Ho<sup>3+</sup> Tridoped Cs<sub>2</sub>Ag<sub>0.3</sub>Na<sub>0.7</sub>InCl<sub>6</sub> Double Perovskite with Excitation-Wavelength-Dependent Triple Emission for Anti-Counterfeiting Application

    No full text
    Developing a secure anti-counterfeiting technology with more dimensional encryptions is urgently demanded. The lead-free double perovskite (DP) family represented by A2BIBIIIX6 hold great potential for applications in advanced fluorescence anti-counterfeiting owing to of large-bandgap engineering via BI/BIII site transmutation or exotic dopants. Herein, Ln3+ (Ln3+ = Eu3+, Ho3+, and Yb3+)-doped Cs2Ag0.3Na0.7InCl6 DP microcrystals (MCs) were firstly successfully synthesized by a hydrothermal method. By selective excitation of different luminescence centrals through precise control of excitation wavelength, we demonstrate dynamic color tuning in the Ln3+-doped Cs2Ag0.3Na0.7InCl6 DPMCs. Specifically, under various excitations of UV 300, 394, and NIR 980 nm, the as-synthesized DPMCs display triple emissions of warm yellow, red, and green, respectively. The warm yellow light stems from the self-trapped exciton (STE) downconversion (DC) luminescence of the DP matrix, while the red and green lights can be attributed to the strong Eu3+ 5D0→7FJ (J = 1, 2, 3, 4) DC luminescence and Ho3+ (5F4→5I8) upconversion (UC) luminescence sensitized by Yb3+. Thus, the as-synthesized Ln3+-doped Cs2Ag0.3Na0.7InCl6 DPMCs, which possess tunable combined DC/UC luminescence, show great potential to be an anti-counterfeiting material with a high security level

    Rayleigh beam underwater metamaterial for low-frequency and broadband sound absorption

    No full text
    Low -frequency and broadband underwater sound absorption has always been a primary industrial concern. Based on the coupling effect of Rayleigh beam vibration and Fabry-Perot resonance, a broadband underwater sound -absorbing metamaterial is proposed and experimentally achieved in this work. The Rayleigh beam vibration provides strong sound absorption at low frequencies ranging from 500 Hz to 3 kHz with a deep subwavelength configuration (1/100 of the wavelength at 500 Hz), while Fabry-Perot resonance works from 3 kHz to 10 kHz. Full -wave simulations and water -impedance tube tests are performed to demonstrate the sound absorbing mechanism. It is shown that the averaged sound absorption coefficient can arrive at 0.87 in a wide broadband range
    corecore