223 research outputs found

    On symbology and differential equations of Feynman integrals from Schubert analysis

    Full text link
    We take the first step in generalizing the so-called "Schubert analysis", originally proposed in twistor space for four-dimensional kinematics, to the study of symbol letters and more detailed information on canonical differential equations for Feynman integral families in general dimensions with general masses. The basic idea is to work in embedding space and compute possible cross-ratios built from (Lorentz products of) maximal cut solutions for all integrals in the family. We demonstrate the power of the method using the most general one-loop integrals, as well as various two-loop planar integral families (such as sunrise, double-triangle and double-box) in general dimensions. Not only can we obtain all symbol letters as cross-ratios from maximal-cut solutions, but we also reproduce entries in the canonical differential equations satisfied by a basis of dlog integrals.Comment: 51 pages, many figure

    KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation

    Full text link
    Vision-and-language navigation (VLN) is the task to enable an embodied agent to navigate to a remote location following the natural language instruction in real scenes. Most of the previous approaches utilize the entire features or object-centric features to represent navigable candidates. However, these representations are not efficient enough for an agent to perform actions to arrive the target location. As knowledge provides crucial information which is complementary to visible content, in this paper, we propose a Knowledge Enhanced Reasoning Model (KERM) to leverage knowledge to improve agent navigation ability. Specifically, we first retrieve facts (i.e., knowledge described by language descriptions) for the navigation views based on local regions from the constructed knowledge base. The retrieved facts range from properties of a single object (e.g., color, shape) to relationships between objects (e.g., action, spatial position), providing crucial information for VLN. We further present the KERM which contains the purification, fact-aware interaction, and instruction-guided aggregation modules to integrate visual, history, instruction, and fact features. The proposed KERM can automatically select and gather crucial and relevant cues, obtaining more accurate action prediction. Experimental results on the REVERIE, R2R, and SOON datasets demonstrate the effectiveness of the proposed method.Comment: Accepted by CVPR 2023. The code is available at https://github.com/XiangyangLi20/KER

    GridMM: Grid Memory Map for Vision-and-Language Navigation

    Full text link
    Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments. To represent the previously visited environment, most approaches for VLN implement memory using recurrent states, topological maps, or top-down semantic maps. In contrast to these approaches, we build the top-down egocentric and dynamically growing Grid Memory Map (i.e., GridMM) to structure the visited environment. From a global perspective, historical observations are projected into a unified grid map in a top-down view, which can better represent the spatial relations of the environment. From a local perspective, we further propose an instruction relevance aggregation method to capture fine-grained visual clues in each grid region. Extensive experiments are conducted on both the REVERIE, R2R, SOON datasets in the discrete environments, and the R2R-CE dataset in the continuous environments, showing the superiority of our proposed method

    Dynamic analysis and control of strip mill vibration under the coupling effect of roll and rolled piece

    Get PDF
    According to the “Hill rolling force formula”, taking particular account of the influence from horizontal vibration of rolled piece in roll gap, a dynamic rolling force model is analyzed. Considering the interaction between vibration of strip and roll, the dynamic vibration model of rolling mill is established. On this basis, the time delayed feedback is introduced to control the vibration of the roll system. The amplitude frequency response of the coupled vibration control equation is obtained by using the multiple scales method. Different time delay parameters are selected to test the control effect. Research results show that the unstable vibration of the roll system can be suppressed with appropriate time delay feedback parameters. Because it is simpler and has good control effect in solving nonlinear mechanical vibration, so these results will make a difference for the research of strip mill vibration, and provide theoretical basis for strip steel production

    Anomalous Nernst effect in compensated ferrimagnetic CoxGd1-x films

    Full text link
    The anomalous Nernst effect (ANE) is one of the most intriguing thermoelectric phenomena which has attracted growing interest both for its underlying physics and potential applications. Typically, a large ANE response is observed in magnets with pronounced magnetizations or nontrivial Berry curvature. Here, we report a significant ANE signal in compensated ferrimagnetic CoxGd1-x alloy films, which exhibit vanishingly small magnetization. In particular, we found that the polarity of ANE signal is dominated by the magnetization orientation of the transition metal Co sublattices, rather than the net magnetization of CoxGd1-x films. This observation is not expected from the conventional understanding of ANE but is analogous to the anomalous Hall effect in compensated ferrimagnets. We attribute the origin of ANE and its Co-dominant property to the Co-dominant Berry curvature. Our work could trigger a more comprehensive understanding of ANE and may be useful for building energy-harvesting devices by employing ANE in compensated ferrimagnets
    corecore