2,155 research outputs found

    Upper limits on the Polarized Isotropic Stochastic Gravitational-Wave Background from Advanced LIGO-Virgo's First Three Observing Runs

    Full text link
    Parity violation is expected to generate an asymmetry between the amplitude of left and right-handed gravitational-wave modes which leads to a circularly polarized stochastic gravitational-wave background (SGWB). Due to the three independent baselines in the LIGO-Virgo network, we focus on the amplitude difference in strain power characterized by Stokes' parameters and do maximum-likelihood estimation to constrain the polarization degree of SGWB. Our results indicate that there is no evidence for the circularly polarized SGWB in the data. Furthermore, by modeling the SGWB as a power-law spectrum, we place upper limit on the normalized energy density Ωgw(25 Hz)<5.3×10−9\Omega_\text{gw}(25\,\text{Hz})<5.3\times10^{-9} at 95%95\% confidence level after marginalizing over the polarization degree and spectral index.Comment: 6 pages, 4 figures and 2 tables; some clarifications added, version accepted for publication in JCA

    An Application of Lorentz Invariance Violation in Black Hole Thermodynamics

    Full text link
    In this paper, we have applied the Lorentz-invariance-violation (LIV) class of dispersion relations (DR) with the dimensionless parameter n = 2 and the "sign of LIV" {\eta}_+ = 1, to phenomenologically study the effect of quantum gravity in the strong gravitational field. Specifically, we have studied the effect of the LIV-DR induced quantum gravity on the Schwarzschild black hole thermodynamics. The result shows that the effect of the LIV-DR induced quantum gravity speeds up the black hole evaporation, and its corresponding black hole entropy undergoes a leading logarithmic correction to the "reduced Bekenstein-Hawking entropy", and the ill defined situations (i.e. the singularity problem and the critical problem) are naturally bypassed when the LIV-DR effect is present. Also, to put our results in a proper perspective, we have compared with the earlier findings by another quantum gravity candidate, i.e. the generalized uncertainty principle (GUP). Finally, we conclude from the inert remnants at the final stage of the black hole evaporation that, the GUP as a candidate for describing quantum gravity can always do as well as the LIV-DR by adjusting the model-dependent parameters, but in the same model-dependent parameters the LIV-DR acts as a more suitable candidate.Comment: 18 pages, 7 figure

    Adaptive Weighted Morphology Detection Algorithm of Plane Object in Docking Guidance System

    Get PDF
    In this paper, we presented an image segmentation algorithm based on adaptive weighted mathematical morphology edge detectors. The performance of the proposed algorithm has been demonstrated on the Lena image. The input of the proposed algorithm is a grey level image. The image was first processed by the mathematical morphological closing and dilation residue edge detector to enhance the edge features and sketch out the contour of the image, respectively. Then the adaptive weight SE operation was applied to the edge-extracted image to fuse edge gaps and hill up holds. Experimental results show it can not only primely extract detail edge, but also superbly preserve integer effect comparative to classical edge detection algorithm
    • …
    corecore