72 research outputs found

    Neuroprotective effects of bis(7)-tacrine against glutamate-induced retinal ganglion cells damage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glutamate-mediated excitotoxicity, primarily through N-methyl-D-aspartate (NMDA) receptors, may be an important cause of retinal ganglion cells (RGCs) death in glaucoma and several other retinal diseases. Bis(7)-tacrine is a noncompetitive NMDA receptors antagonist that can prevent glutamate-induced hippocampal neurons damage. We tested the effects of bis(7)-tacrine against glutamate-induced rat RGCs damage in vitro and in vivo.</p> <p>Results</p> <p>In cultured neonatal rats RGCs, the MTT assay showed that glutamate induced a concentration- and time-dependent toxicity. Bis(7)-tacrine and memantine prevented glutamate-induced cell death in a concentration-dependent manner with IC50 values of 0.028 μM and 0.834 μM, respectively. The anti-apoptosis effects of bis(7)-tacrine were confirmed by annexin V-FITC/PI staining. In vivo, TUNEL analysis and retrograde labeling analysis found that pretreatment with bis(7)-tacrine(0.2 mg/kg) induced a significant neuroprotective effect against glutamate-induced RGCs damage.</p> <p>Conclusions</p> <p>Our results showed that bis(7)-tacrine had neuroprotective effects against glutamate-induced RGCs damage in vitro and in vivo, possibly through the drug's anti-NMDA receptor effects. These findings make bis(7)-tacrine potentially useful for treating a variety of ischemic or traumatic retinopathies inclusive of glaucoma.</p

    Differentiation of pulmonary solid nodules attached to the pleura detected by thin-section CT

    No full text
    Abstract Background Pulmonary solid pleura-attached nodules (SPANs) are not very commonly detected and thus not well studied and understood. This study aimed to identify the clinical and CT characteristics for differentiating benign and malignant SPANs. Results From January 2017 to March 2023, a total of 295 patients with 300 SPANs (128 benign and 172 malignant) were retrospectively enrolled. Between benign and malignant SPANs, there were significant differences in patients’ age, smoking history, clinical symptoms, CT features, nodule-pleura interface, adjacent pleural change, peripheral concomitant lesions, and lymph node enlargement. Multivariate analysis revealed that smoking history (odds ratio [OR], 2.016; 95% confidence interval [CI], 1.037–3.919; p = 0.039), abutting the mediastinal pleura (OR, 3.325; 95% CI, 1.235–8.949; p = 0.017), nodule diameter (> 15.6 mm) (OR, 2.266; 95% CI, 1.161–4.423; p = 0.016), lobulation (OR, 8.922; 95% CI, 4.567–17.431; p  15.6 mm in diameter), lobulation, narrow basement, or simultaneous hilar and mediastinal lymph nodule enlargement are more likely to be malignant. Critical relevance statement The benign and malignant SPANs have significant differences in clinical and CT features. Understanding the differences between benign and malignant SPANs is helpful for selecting the high-risk ones and avoiding unnecessary surgical resection. Key points • The solid pleura-attached nodules (SPANs) are closely related to the pleura. • Relationship between nodule and pleura and pleural changes are important for differentiating SPANs. • Benign SPANs frequently have broad pleural thickening or embed in thickened pleura. • Smoking history and lesions abutting the mediastinal pleura are indicators of malignant SPANs. • Malignant SPANs usually have larger diameters, lobulation signs, narrow basements, and lymphadenopathy. Graphical Abstrac
    corecore