16,216 research outputs found
Cavity QED treatment of scattering-induced efficient free-space excitation and collection in high-Q whispering-gallery microcavities
Whispering-gallery microcavity laser possesses ultralow threshold, whereas
convenient free-space optical excitation and collection suffer from low
efficiencies due to its rotational symmetry. Here we analytically study a
three-dimensional microsphere coupled to a nano-sized scatterer in the
framework of quantum optics. It is found that the scatterer is capable of
coupling light in and out of the whispering-gallery modes (WGMs) without
seriously degrading their high-Q properties, while the microsphere itself plays
the role of a lens to focus the input beam on the scatterer and vice versa. Our
analytical results show that (1) the high-Q WGMs can be excited in free space,
and (2) over 50% of the microcavity laser emission can be collected within less
than . This coupling system holds great potential for low
threshold microlasers free of external couplers.Comment: 10 pages, 8 figure
Hydrodynamics and Local Turbulent Mixing of Submerged, Parallel Liquid Jets: Experiments and CFD Simulations
The hydrodynamics and local turbulent mixing of parallel multiple liquid jets, submerged in liquid, were investigated by means of experiments and computational fluid dynamics (CFD). A renormalization group (RNG) k-ε turbulence model was used to simulate the flow field. The model was validated experimentally by particle image velocimetry (PIV) measurements. In the converging region adjacent to the nozzle exits, the recirculation region disappears, and there is only ambient fluid entrainment. Different jet arrays were compared to evaluate the effects of the jet spatial arrangement on the hydrodynamics and mixing performance. A shorter mixing length in the merging region suggests that mixing is more efficient in the triple-jet system than in other jet systems. Compared with the jet Reynolds number, the jet spacing plays a more significant role in determining the critical mixing regions, while the linear relationship between them is more sensitive than that for multiple parallel plane jets
UAV Swarm Mission Planning in Dynamic Environment Using Consensus-Based Bundle Algorithm.
To solve the real-time complex mission-planning problem for Multiple heterogeneous Unmanned Aerial Vehicles (UAVs) in the dynamic environments, this paper addresses a new approach by effectively adapting the Consensus-Based Bundle Algorithms (CBBA) under the constraints of task timing, limited UAV resources, diverse types of tasks, dynamic addition of tasks, and real-time requirements. We introduce the dynamic task generation mechanism, which satisfied the task timing constraints. The tasks that require the cooperation of multiple UAVs are simplified into multiple sub-tasks to perform by a single UAV independently. We also introduce the asynchronous task allocation mechanism. This mechanism reduces the computational complexity of the algorithm and the communication time between UAVs. The partial task redistribution mechanism has been adopted for achieving the dynamic task allocation. The real-time performance of the algorithm is assured on the premise of optimal results. The feasibility and real-time performance of the algorithm are validated by conducting dynamic simulation experiments
- …