32,130 research outputs found

    Robust Modeling Using Non-Elliptically Contoured Multivariate t Distributions

    Full text link
    Models based on multivariate t distributions are widely applied to analyze data with heavy tails. However, all the marginal distributions of the multivariate t distributions are restricted to have the same degrees of freedom, making these models unable to describe different marginal heavy-tailedness. We generalize the traditional multivariate t distributions to non-elliptically contoured multivariate t distributions, allowing for different marginal degrees of freedom. We apply the non-elliptically contoured multivariate t distributions to three widely-used models: the Heckman selection model with different degrees of freedom for selection and outcome equations, the multivariate Robit model with different degrees of freedom for marginal responses, and the linear mixed-effects model with different degrees of freedom for random effects and within-subject errors. Based on the Normal mixture representation of our t distribution, we propose efficient Bayesian inferential procedures for the model parameters based on data augmentation and parameter expansion. We show via simulation studies and real examples that the conclusions are sensitive to the existence of different marginal heavy-tailedness

    Spectral distributions of adjacency and Laplacian matrices of random graphs

    Full text link
    In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval almost surely; (iii) the empirical distributions of the eigenvalues of the Laplacian matrices converge weakly to the free convolution of the standard Gaussian distribution and the Wigner's semi-circular law; (iv) the empirical distributions of the eigenvalues of the adjacency matrices converge weakly to the Wigner's semi-circular law.Comment: Published in at http://dx.doi.org/10.1214/10-AAP677 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore