3,269 research outputs found

    Cycle symmetry, limit theorems, and fluctuation theorems for diffusion processes on the circle

    Full text link
    Cyclic structure and dynamics are of great interest in both the fields of stochastic processes and nonequilibrium statistical physics. In this paper, we find a new symmetry of the Brownian motion named as the quasi-time-reversal invariance. It turns out that such an invariance of the Brownian motion is the key to prove the cycle symmetry for diffusion processes on the circle, which says that the distributions of the forming times of the forward and backward cycles, given that the corresponding cycle is formed earlier than the other, are exactly the same. With the aid of the cycle symmetry, we prove the strong law of large numbers, functional central limit theorem, and large deviation principle for the sample circulations and net circulations of diffusion processes on the circle. The cycle symmetry is further applied to obtain various types of fluctuation theorems for the sample circulations, net circulation, and entropy production rate.Comment: 28 page

    Cell Population Dynamics: Its Relationship with Finite State Markov Chain and its Asymptotic Behavior

    Full text link
    We consider the cell population dynamics with n different phenotypes. Cells in one phenotype can produce cells in other phenotypes through conversions or asymmetric divisions. Both the Markov branching process model and the ordinary differential equation (ODE) system model are presented, and exploited to investigate the dynamics of the phenotypic proportions. Gupta et al. observed that with different initial population states, the proportions of different phenotypes will always tend to certain constants ("phenotypic equilibrium"). In the ODE system model, they gave a mathematical explanation through assuming the phenotypic proportions satisfy the Kolmogorov forward equations of an n-state Markov chain. We give a sufficient and necessary condition under which this assumption is valid. We also prove the "phenotypic equilibrium" without such assumption. In the Markov branching process model, more generally, we show the stochastic explanation of "phenotypic equilibrium" through improving a limit theorem in Janson's paper, which may be of theoretical interests. As an application, we will give sufficient and necessary conditions under which the proportion of one phenotype tends to 0 (die out) or 1 (dominate). We also extend our results to non-Markov cases.Comment: 14 page

    Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding

    Full text link
    In this paper, we perform a complete analysis of the kinetic behavior of the general modifier mechanism of Botts and Morales in both equilibrium steady states and non-equilibrium steady states (NESS). Enlightened by the non-equilibrium theory of Markov chains, we introduce the net flux into discussion and acquire an expression of product rate in NESS, which has clear biophysical significance. Up till now, it is a general belief that being an activator or an inhibitor is an intrinsic property of the modifier. However, we reveal that this traditional point of view is based on the equilibrium assumption. A modifier may no longer be an overall activator or inhibitor when the reaction system is not in equilibrium. Based on the regulation of enzyme activity by the modifier concentration, we classify the kinetic behavior of the modifier into three categories, which are named hyperbolic behavior, bell-shaped behavior, and switching behavior, respectively. We show that the switching phenomenon, in which a modifier may convert between an activator and an inhibitor when the modifier concentration varies, occurs only in NESS. Effects of drugs on the Pgp ATPase activity, where drugs may convert from activators to inhibitors with the increase of the drug concentration, are taken as a typical example to demonstrate the occurrence of the switching phenomenon.Comment: 19 pages, 10 figure

    Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction

    Get PDF
    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson {\it et al.} [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fan-like electron outflow region including three well-collimated electron jets appears. The (>1>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS

    Screening Quality Evaluation Factors of Freeze-Dried Peach ( Prunus Persica

    Get PDF
    The quality evaluation of processed products is complex. To simplify the quality evaluation process and improve the efficiency, fourteen evaluation factors of freeze-dried powders of seventeen cultivars of peach at different ripening times were analyzed. The most important evaluation indicators and criteria were obtained by analysis of variance (ANOVA), correlation analysis (CA), principal component analysis (PCA), system cluster analysis (SCA), and analytic hierarchy process (AHP). Results showed that the peach powders had the significant differences in quality (P<0.05), and some processing factors were related with some physicochemical and nutritional factors. Five principle components were extracted by PCA and the cumulative contribution achieved was 84.46%. Through the score plot of the first two principal components, a clear differentiation among ripening times was found and three distinct groups were separated according to ripening time. Five characteristic factors were obtained as titratable acid, browning index, hemicellulose, hygroscopicity, and vitamin C by SCA. Their weights of 0.1249, 0.3007, 0.0514, 0.4916, and 0.0315 were obtained by AHP, respectively. The peach cultivars were divided into four evaluation grades by the comprehensive quality score

    Systems Chemical Genetics-Based Drug Discovery: Prioritizing Agents Targeting Multiple/Reliable Disease-Associated Genes as Drug Candidates

    Get PDF
    Genetic disease genes are considered a promising source of drug targets. Most diseases are caused by more than one pathogenic factor; thus, it is reasonable to consider that chemical agents targeting multiple disease genes are more likely to have desired activities. This is supported by a comprehensive analysis on the relationships between agent activity/druggability and target genetic characteristics. The therapeutic potential of agents increases steadily with increasing number of targeted disease genes, and can be further enhanced by strengthened genetic links between targets and diseases. By using the multi-label classification models for genetics-based drug activity prediction, we provide universal tools for prioritizing drug candidates. All of the documented data and the machine-learning prediction service are available at SCG-Drug (http://zhanglab.hzau.edu.cn/scgdrug)

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    Get PDF
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
    • …
    corecore