239 research outputs found

    Practices and Insights of Digital Transformation in Financial Management Education at Private Universities

    Get PDF
    This paper aims to explore the practical experiences and insights gained from digital transformation initiatives in financial management education at private universities through case studies. The widespread application of digital technology in the field of education is profoundly altering conventional teaching methodologies. By conducting thorough investigations into the digital transformation endeavors within financial management education at various private universities, this study compiles the key success factors evident in effective cases, such as collaborative efforts among faculty members and increased student engagement. Moreover, valuable recommendations are drawn from these experiences, including suggestions to enhance teacher training and optimize course content. These practical insights and lessons have significant implications for similar disciplines and contribute valuable guidance to the process of digital transformation within higher education institutions

    Is cloud computing the digital solution to the future of banking?

    Get PDF
    Acknowledgment: We express our thanks to the editors and anonymous referees for their constructive comments and suggestions, which have helped us significantly improve this paper. We have benefitted from discussions with colleagues and participants of different seminars/workshops in China and the UK. All remaining errors are our own. This research is financially supported by the Natural Science Foundation of China (72173036, 71973148) and the Chinese National Funding of Social Sciences (19CJY065).Peer reviewedPublisher PD

    Research on the Integrated Development Mode of Pastoral Agriculture

    Get PDF
    As an emerging thing different from traditional agriculture, the pastoral complex covers a wide range. This paper mainly designs the agricultural landscape under the concept of the pastoral complex to create a more attractive park, attract more tourists to travel and consume here, develop the local economy, improve local income, and promote the implementation of the rural revitalization strategy in the local area. This paper combines theory with practice, broadens the application methods and theoretical framework of the design of rural complexes, has specific reference value for the research of the design of rural complexes, is conducive to the construction of rural landscapes and the protection of rural ecology, arouses people’s re-examination of the construction of rural landscape, and has specific theoretical and practical significance for the development of rural landscape and the implementation of rural revitalization strategy

    Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity

    Get PDF
    Strain sensors are currently limited by an inability to operate over large deformations or to exhibit linear responses to strain. Producing strain sensors meeting these criteria remains a particularly difficult challenge. In this work, the fabrication of a highly flexible strain sensor based on electrospun thermoplastic polyurethane (TPU) fibrous tubes comprising wavy and oriented fibers coated with carboxylated multiwall carbon nanotubes (CNTs) is described. By combining spraying and ultrasonic-assisted deposition, the number of CNTs deposited on the electrospun TPU fibrous tube could reach 12 wt%, which can potentially lead to the formation of an excellent conductive network with high conductivity of 0.01 S/cm. The as-prepared strain sensors exhibited a wide strain sensing range of 0–760% and importantly high linearity over the whole sensing range while maintaining high sensitivity with a GF of 57. Moreover, the strain sensors were capable of detecting a low strain (2%) and achieved a fast response time whilst retaining a high level of durability. The TPU/CNTs fibrous tube-based strain sensors were found capable of accurately monitoring both large and small human body motions. Additionally, the strain sensors exhibited rapid response time, (e.g., 45 ms) combined with reliable long-term stability and durability when subjected to 60 min of water washing. The strain sensors developed in this research had the ability to detect large and subtle human motions, (e.g., bending of the finger, wrist, and knee, and swallowing). Consequently, this work provides an effective method for designing and manufacturing high-performance fiber-based wearable strain sensors, which offer wide strain sensing ranges and high linearity over broad working strain ranges

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Printable Dielectric Elastomers of High Electromechanical Properties Based on SEBS Ink Incorporated With Polyphenols Modified Dielectric Particles

    Get PDF
    In this work, a recently developed 3D additive processing technology termed electrohydrodynamic (EHD) printing was employed to fabricate dielectric elastomer (DE) films by using styrene-ethylene-butylene-styrene (SEBS) inks with the addition of high dielectric titanium dioxide (TiO2) nanoparticles. In order to improve the dispersibility of TiO2 in the SEBS matrix, extracted walnut polyphenols were utilized for surface modification of TiO2 nanoparticles labelled wp-TiO2. The effect of the applied voltage on the ink jet morphology of the obtained SEBS based inks during EHD printing was analyzed. The prepared films had precision patterned shapes and their morphology was studied. It revealed that the dispersibility of TiO2 nanoparticles in the SEBS matrix and their compatibility were greatly improved using this procedure. Furthermore, the printed DE films were found to have excellent mechanical, dielectric and electromechanical properties. For the range of DEs fabricated, the SEBS/10%wp-TiO2 composite exhibited the maximum actuated area strain of 21.5% at an electric field of about 34.0 V/μm without degradation of other properties

    In Situ SEM Torsion Test of Metallic Glass Microwires Based on Micro Robotic Manipulation

    Get PDF
    Microwires, such as metallic, semiconductor, and polymer microwires and carbon fibers, have stimulated great interest due to their importance in various structural and functional applications. Particularly, metallic glass (MG) microwires, because of their amorphous atoms arrangement, have some unique mechanical properties compared with traditional metals. Despite the fact that substantial research efforts have been made on the mechanical characterizations of metallic glass microwires under tension or flexural bending, the mechanical properties of microwires under torsional loading have not been well studied, mainly due to the experimental difficulties, such as the detection of torsion angle, quantitative measurement of the torsional load, and the alignment between the specimen and torque meter. In this work, we implemented the in situ SEM torsion tests of individual La50Al30Ni20 metallic glass (MG) microwires successfully based on a self-developed micro robotic mechanical testing system. Unprecedented details, such as the revolving vein-pattern along the torsion direction on MG microwires fracture surface, were revealed. Our platform could provide critical insights into understanding the deformation mechanisms of other microwires under torsional loading and can even be further used for robotic micromanufacturing

    A flexible dual-mode pressure sensor with ultra-high sensitivity based on BTO@MWCNTs core-shell nanofibers

    Get PDF
    Wearable flexible sensors have developed rapidly in recent years because of their improved capacity to detect human motion in wide-ranging situations. In order to meet the requirements of flexibility and low detection limits, a new pressure sensor was fabricated based on electrospun barium titanate/multi-wall carbon nanotubes (BTO@MWCNTs) core-shell nanofibers coated with styrene-ethylene-butene-styrene block copolymer (SEBS). The sensor material (BTO@MWCNTs/SEBS) had a SEBS to BTO/MWCNTs mass ratio of 20:1 and exhibited an excellent piezoelectricity over a wide range of workable pressures from 1 to 50 kPa, higher output current of 56.37 nA and a superior piezoresistivity over a broad working range of 20 to 110 kPa in compression. The sensor also exhibited good durability and repeatability under different pressures and under long-term cyclic loading. These properties make the composite ideal for applications requiring monitoring subtle pressure changes (exhalation, pulse rate) and finger movements. The pressure sensor developed based on BTO@MWCNTs core-shell nanofibers has demonstrated great potential to be assembled into intelligent wearable devices

    Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method

    Get PDF
    To establish a satisfactory delivery system for the delivery of salinomycin (Sal), a novel, selective cancer stem cell inhibitor with prominent toxicity, gelatinase-responsive core-shell nanoparticles (NPs), were prepared by nanoprecipitation method (NR-NPs) and single emulsion method (SE-NPs). The gelatinase-responsive copolymer was prepared by carboxylation and double amination method. We studied the stability of NPs prepared by nanoprecipitation method with different proportions of F68 in aqueous phase to determine the best proportion used in our study. Then, the NPs were prepared by nanoprecipitation method with the best proportion of F68 and single emulsion method, and their physiochemical traits including morphology, particle size, zeta potential, drug loading content, stability, and in vitro release profiles were studied. The SE-NPs showed significant differences in particle size, drug loading content, stability, and in vitro release profiles compared to NR-NPs. The SE-NPs presented higher drug entrapment efficiency and superior stability than the NR-NPs. The drug release rate of SE-NPs was more sustainable than that of the NR-NPs, and in vivo experiment indicated that NPs could prominently reduce the toxicity of Sal. Our study demonstrates that the SE-NPs could be a satisfactory method for the preparation of gelatinase-responsive NPs for intelligent delivery of Sal
    corecore